检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Siyu Chen Li Fu Siyu Chen;Li Fu(School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China)
机构地区:[1]School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China
出 处:《Journal of Computer and Communications》2024年第11期173-186,共14页电脑和通信(英文)
摘 要:Decision tree is an effective supervised learning method for solving classification and regression problems. This article combines the Pearson correlation coefficient with the CART decision tree, replacing the Gini coefficient with the correlation coefficient to consider the correlation between conditional attributes, prioritizing the selection of conditional attributes with higher correlation coefficients as leaf nodes. The collected data on homebuyers is divided into age groups, including youth, middle-aged, and elderly groups. Both traditional CART decision tree and improved CART decision tree are applied to this problem, and after comparison, it is found that the depth of the CART decision tree in this study is reduced, the number of leaf nodes is decreased, the time complexity is shortened, efficiency is improved, and pruning issues are avoided. Finally, corresponding housing recommendations are given to homebuyers of different ages.Decision tree is an effective supervised learning method for solving classification and regression problems. This article combines the Pearson correlation coefficient with the CART decision tree, replacing the Gini coefficient with the correlation coefficient to consider the correlation between conditional attributes, prioritizing the selection of conditional attributes with higher correlation coefficients as leaf nodes. The collected data on homebuyers is divided into age groups, including youth, middle-aged, and elderly groups. Both traditional CART decision tree and improved CART decision tree are applied to this problem, and after comparison, it is found that the depth of the CART decision tree in this study is reduced, the number of leaf nodes is decreased, the time complexity is shortened, efficiency is improved, and pruning issues are avoided. Finally, corresponding housing recommendations are given to homebuyers of different ages.
关 键 词:Decision Tree Gini Coefficient Correlation Coefficient
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49