PTVC-M for Ultra-Agile VTOL and 300+ km·h-1 Cruising  被引量:1

PTVC-M for Ultra-Agile VTOL and 300+ km·h-1 Cruising

在线阅读下载全文

作  者:Chung-Kiak Poh Chung-How Poh Chung-Kiak Poh;Chung-How Poh(Aero-Persistence Research, Penang, Malaysia)

机构地区:[1]Aero-Persistence Research, Penang, Malaysia

出  处:《Advances in Aerospace Science and Technology》2016年第1期48-57,共11页航空科学与技术(英文)

摘  要:There remains a need to develop improved VTOL techniques that are cost-effective and with minimum compromise on cruising flight performance for fixed-wing aircraft. This work proposes an elegant VTOL control method known as PTVC-M (pitch-axis thrust vector control with moment arms) for tailsitters. The hallmark of the approach is the complete elimination of control surfaces such as elevators and rudder. Computer simulations with a 1580 mm wing span airplane reveal that the proposed technique results in authoritative control and unique maneuverability such as inverted vertical hover and stall-spin with positive climb rate. Zero-surface requirement of the PTVC-M virtually eliminates performance tradeoffs between VTOL and high-speed flight. In this proof-of-concept study, the VTOL-capable aircraft achieves a VH of 360 km·h<sup>-1</sup> at near sea-level. The proposed technique will benefit a broad range of applications including high-performance spinsonde that can directly measure 10-m surface wind, tropical cyclone research, and possibly serving as the cornerstone for the next-generation sport aerobatics.There remains a need to develop improved VTOL techniques that are cost-effective and with minimum compromise on cruising flight performance for fixed-wing aircraft. This work proposes an elegant VTOL control method known as PTVC-M (pitch-axis thrust vector control with moment arms) for tailsitters. The hallmark of the approach is the complete elimination of control surfaces such as elevators and rudder. Computer simulations with a 1580 mm wing span airplane reveal that the proposed technique results in authoritative control and unique maneuverability such as inverted vertical hover and stall-spin with positive climb rate. Zero-surface requirement of the PTVC-M virtually eliminates performance tradeoffs between VTOL and high-speed flight. In this proof-of-concept study, the VTOL-capable aircraft achieves a VH of 360 km·h<sup>-1</sup> at near sea-level. The proposed technique will benefit a broad range of applications including high-performance spinsonde that can directly measure 10-m surface wind, tropical cyclone research, and possibly serving as the cornerstone for the next-generation sport aerobatics.

关 键 词:Pitch-Axis Thrust Vector Control VTOL Tailsitter Ultra-Maneuverability 

分 类 号:V27[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象