Shock Wave Mitigation by Air Plasma Deflector  

Shock Wave Mitigation by Air Plasma Deflector

在线阅读下载全文

作  者:Spencer P. Kuo 

机构地区:[1]Department of Electrical & Computer Engineering, New York University-Tandon School of Engineering, Brooklyn, NY, USA

出  处:《Advances in Aerospace Science and Technology》2018年第4期71-88,共18页航空科学与技术(英文)

摘  要:When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock waves have been a detriment for the development of supersonic aircrafts, which have to overcome high wave drag and surface heating from additional friction. Shock wave also produces sonic booms. The noise issue raises environmental concerns, which have precluded routine supersonic flight over land. Therefore, mitigation of shock wave is essential to advance the development of supersonic aircrafts. A plasma mitigation technique is studied. A theory is presented to show that shock wave structure can be modified via flow deflection. Symmetrical deflection evades the need of exchanging the transverse momentum between the flow and the deflector. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow. A non-thermal air plasma, generated by on-board 60 Hz periodic electric arc discharge in front of a wind tunnel model, was applied as a plasma deflector for shock wave mitigation technique. The experiment was conducted in a Mach 2.5 wind tunnel. The results show that the air plasma was generated symmetrically in front of the wind tunnel model. With increasing discharge intensity, the plasma deflector transforms the shock from a welldefined attached shock into a highly curved shock structure with increasing standoff distance from the model;this curved shock has increased shock angle and also appears in increasingly diffused form. In the decay of the discharge intensity, the shock front is first transformed back to a well-defined curve shock, which moves downstream to become a perturbed oblique shock;the baseline shock front then reappears as the discharge is reduced to low level again. The experimental observations confirm the theory. The steady of the incoming flow during the discharge cycle is manifested by the repeat of the baseline shock front.When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock waves have been a detriment for the development of supersonic aircrafts, which have to overcome high wave drag and surface heating from additional friction. Shock wave also produces sonic booms. The noise issue raises environmental concerns, which have precluded routine supersonic flight over land. Therefore, mitigation of shock wave is essential to advance the development of supersonic aircrafts. A plasma mitigation technique is studied. A theory is presented to show that shock wave structure can be modified via flow deflection. Symmetrical deflection evades the need of exchanging the transverse momentum between the flow and the deflector. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow. A non-thermal air plasma, generated by on-board 60 Hz periodic electric arc discharge in front of a wind tunnel model, was applied as a plasma deflector for shock wave mitigation technique. The experiment was conducted in a Mach 2.5 wind tunnel. The results show that the air plasma was generated symmetrically in front of the wind tunnel model. With increasing discharge intensity, the plasma deflector transforms the shock from a welldefined attached shock into a highly curved shock structure with increasing standoff distance from the model;this curved shock has increased shock angle and also appears in increasingly diffused form. In the decay of the discharge intensity, the shock front is first transformed back to a well-defined curve shock, which moves downstream to become a perturbed oblique shock;the baseline shock front then reappears as the discharge is reduced to low level again. The experimental observations confirm the theory. The steady of the incoming flow during the discharge cycle is manifested by the repeat of the baseline shock front.

关 键 词:Shock Wave MITIGATION Electric DISCHARGE Air Plasma DEFLECTOR SHADOWGRAPH Drag Reduction Wind TUNNEL Charge Transfer 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象