机构地区:[1]Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Jingzhou, China [2]Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral, Shandong University of Science and Technology, Qingdao, China [3]College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China [4]College of Resources and Environment, Yangtze University, Wuhan Campus, Wuhan, China [5]College of Petroleum Engineering, Yangtze University, Wuhan Campus, Wuhan, China
出 处:《Open Journal of Yangtze Oil and Gas》2020年第4期145-164,共20页长江油气(英文版)
摘 要:Recently, the problem of phenolic organics pollution has become increasingly serious. More and more strategies have been developed to remove phenolic organics from water, including oxidation, adsorption, chemical precipitation, etc. Among them, adsorption technology has attracted great attention due to its advantages of high efficiency, simplicity and easy operation. In this study, the natural shale soil without any modification was directly used as adsorbent to remove phenol from aqueous solutions. The shale soil samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and nitrogen adsorption-desorption isotherms. Detailed kinetics and isotherm studies of phenol adsorption onto shale were investigated. According to the results of the orthogonal test, the influence degree of the four factors on the removal of phenol by soil samples was operating temperature > adsorbent dosage > contact time > pH. The adsorption kinetics of phenols by the soil corresponded with the pseudo-second-order kinetic model. Thermodynamic studies indicated that Freundlich adsorption isotherm model could better describe phenol removal characteristics than Langmuir adsorption isotherm model. And the maximum adsorption capacity was found to be 9.68 mg/g for phenol. It is concluded that shale soil without any modification or activated methods could be employed as a low-cost alternative adsorbent for wastewater treatment.Recently, the problem of phenolic organics pollution has become increasingly serious. More and more strategies have been developed to remove phenolic organics from water, including oxidation, adsorption, chemical precipitation, etc. Among them, adsorption technology has attracted great attention due to its advantages of high efficiency, simplicity and easy operation. In this study, the natural shale soil without any modification was directly used as adsorbent to remove phenol from aqueous solutions. The shale soil samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and nitrogen adsorption-desorption isotherms. Detailed kinetics and isotherm studies of phenol adsorption onto shale were investigated. According to the results of the orthogonal test, the influence degree of the four factors on the removal of phenol by soil samples was operating temperature > adsorbent dosage > contact time > pH. The adsorption kinetics of phenols by the soil corresponded with the pseudo-second-order kinetic model. Thermodynamic studies indicated that Freundlich adsorption isotherm model could better describe phenol removal characteristics than Langmuir adsorption isotherm model. And the maximum adsorption capacity was found to be 9.68 mg/g for phenol. It is concluded that shale soil without any modification or activated methods could be employed as a low-cost alternative adsorbent for wastewater treatment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...