检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安康水力发电厂,陕西 安康 [2]武汉大学水资源与水电工程科学国家重点实验室,湖北 武汉
出 处:《水资源研究》2020年第2期202-210,共9页Journal of Water Resources Research
摘 要:安康流域受人类活动等因素影响,下垫面条件发生较大变化,洪水预报系统的误差较大。考虑到水文数据是一种复杂的时间序列,普通的水文模型难以捕捉其变化规律,LSTM (长短期记忆)作为一种有记忆能力的学习网络模型,通过不断输入的新数据,学习时间序列的主要特征和变化趋势,能很好地学习水文数据这种复杂的多变的时间序列。本文利用LSTM网络模型对安康水库洪水过程进行模拟,并与新安江模型进行比较分析,探讨LSTM网络模型在水库洪水预报的适应性。The underlying surface conditions have changed greatly in the Ankang river basin due to human activities, and the error of the flood forecasting system is relatively large. Considering that hydrological data is a complex time series, it is difficult for ordinary hydrological models to capture its changing laws. LSTM (Long-short term memory), as a learning network with memory ability, can learn the complex and chan-geable time of hydrological data well by continuously inputting new data and learning the main features and changes of time series sequence. The LSTM network model is used to simulate the flood process of Ankang reservoir and compare with the Xinanjiang model. The adaptability of LSTM model in reservoir flood prediction is also discussed.
分 类 号:TV6[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124