INEXACT

作品数:69被引量:91H指数:4
导出分析报告
相关领域:理学更多>>
相关作者:黄记祖唐春明吕莹更多>>
相关机构:山西工程职业技术学院广西大学北京师范大学香港大学更多>>
相关期刊:《Journal of Beijing Institute of Technology》《中国多媒体与网络教学学报(电子版)》《Applied Mathematics and Mechanics(English Edition)》《World Journal of Nephrology》更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Science China(Information Sciences)x
条 记 录,以下是1-2
视图:
排序:
Inexact proximal gradient algorithm with random reshuffling for nonsmooth optimization
《Science China(Information Sciences)》2025年第1期216-234,共19页Xia JIANG Yanyan FANG Xianlin ZENG Jian SUN Jie CHEN 
supported in part by National Key R&D Program of China(Grant No.2021YFB1714800);National Natural Science Foundation of China(Grant Nos.61925303,62088101,62073035,62173034);Natural Science Foundation of Chongqing(Grant No.2021ZX4100027).
Proximal gradient algorithms are popularly implemented to achieve convex optimization with nonsmooth regularization.Obtaining the exact solution of the proximal operator for nonsmooth regularization is challenging bec...
关键词:proximal operator random reshuffling inexact computation compressed sensing nonsmooth optimization 
Multi-instance partial-label learning:towards exploiting dual inexact supervision被引量:1
《Science China(Information Sciences)》2024年第3期44-57,共14页Wei TANG Weijia ZHANG Min-Ling ZHANG 
supported by National Natural Science Foundation of China (Grant Nos.62225602,62206047)。
Weakly supervised machine learning algorithms are able to learn from ambiguous samples or labels,e.g.,multi-instance learning or partial-label learning.However,in some real-world tasks,each training sample is associat...
关键词:machine learning multi-instance partial-label learning multi-instance learning partial-label learning Gaussian processes 
检索报告 对象比较 聚类工具 使用帮助 返回顶部