相关期刊:《Journal of Applied Mathematics and Physics》《模糊系统与数学》《Numerical Mathematics(Theory,Methods and Applications)》《Analysis in Theory and Applications》更多>>
National Institute of Technology Karnataka, India, for the financial support
In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. ...
In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is...
supported by the National Natural Science Foundation of China(61271398);K.C.Wong Magna Fund in Ningbo University;Natural Science Foundation of Ningbo City(2010A610102)
The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transf...
This project was supported by TRAPOYT, the Key Project of Chinese Ministry of Education(104126) the NNSF of China(10371046)
This article is concerned with the ill-posed Cauchy problem associated with a densely defined linear operator A in a Banach space. A family of weak regularizing operators is introduced. If the spectrum of A is contain...
This work was supported by the National Natural Science Foundation of China
This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods...