SVMS

作品数:75被引量:322H指数:8
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:闫志刚杜培军胡忠义鲍玉昆熊涛更多>>
相关机构:中国矿业大学华中科技大学中南大学哈尔滨工业大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Frontiers of Computer Sciencex
条 记 录,以下是1-2
视图:
排序:
Dropout training for SVMs with data augmentation被引量:1
《Frontiers of Computer Science》2018年第4期694-713,共20页Ning CHEN Jun ZHU Jianfei CHEN Ting CHEN 
Dropout and other feature noising schemes have shown promise in controlling over-fitting by artificially corrupting the training data. Though extensive studies have been performed for generalized linear models, little...
关键词:DROPOUT SVMS logistic regression data aug- mentation iteratively reweighted least square 
Training SVMs on a bound vectors set based on Fisher projection被引量:1
《Frontiers of Computer Science》2014年第5期793-806,共14页Xu YU Jing YANG Zhiqiang XIE 
This work was sponsored by the National Natural Sci- ence Foundation of China (Grant Nos. 61370083, 61073043, 61073041 and 61370086), the National Research Foundation for the Doctoral Program of Higher Education of China (20112304110011 and 20122304110012), the Natural Science Foundation of Heilongjiang Province (F200901), and the Harbin Outstanding Academic Leader Foundation of Heilongjiang Province of China (2011RFXXG015).
Standard support vector machines (SVMs) train- ing algorithms have O(l3) computational and O(l2) space complexities, where l is the training set size. It is thus com- /putationally infeasible on very large data ...
关键词:support vector machines bound vectors set Fisher discriminant sequential minimal optimization 
检索报告 对象比较 聚类工具 使用帮助 返回顶部