MAXIMIZATION

作品数:204被引量:172H指数:5
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:王佳丁洁丽官小平郭小卫王宏琦更多>>
相关机构:武汉大学清华大学北京东方泰坦科技股份有限公司中国科学院研究生院更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划高等学校学科创新引智计划更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=国际计算机前沿大会会议论文集x
条 记 录,以下是1-6
视图:
排序:
Target Market Optimal Coverage Algorithm Based on Heat Diffusion Model
《国际计算机前沿大会会议论文集》2019年第2期508-510,共3页Jinghua Zhu Yuekai Zhang Bochong Li 
The maximization of personalized influence is a branch of maximizing the influence of social networks, and the goal is to target specific social network users and mine the set of initial impact diffusion users that ha...
关键词:SOCIAL NETWORK Influence MAXIMIZATION HEAT DIFFUSION CLUSTERING 
Negative Influence Maximization in Social Networks
《国际计算机前沿大会会议论文集》2018年第1期22-22,共1页Jinghua Zhu Bochong Li Yuekai Zhang Yaqiong Li 
Incremental Influence Maximization for Dynamic Social Networks
《国际计算机前沿大会会议论文集》2017年第2期4-5,共2页Yake Wang Jinghua Zhu Qian Ming 
Influence maximization is one fundamental and important problem to identify a set of most influential individuals to develop effective viral marketing strategies in social network. Most existing studies mainly focus o...
关键词:INFLUENCE MAXIMIZATION Dynamic SOCIAL network Linear THRESHOLD model PRUNING strategy 
Mining Initial Nodes with BSIS Model and BS-G Algorithm on Social Networks for Influence Maximization
《国际计算机前沿大会会议论文集》2017年第2期33-35,共3页Xiaoheng Deng Dejuan Cao Yan Pan Hailan Shen Fang Long 
Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral...
关键词:Social networks INFLUENCE MAXIMIZATION Behavior TENDENCY SENTIMENT TENDENCY GREEDY ALGORITHM 
Influence Maximization for Cascade Model with Diffusion Decay in Social Networks
《国际计算机前沿大会会议论文集》2016年第1期106-108,共3页Zhijian Zhang Hong Wu Kun Yue Jin Li Weiyi Liu 
This paper was supported by the National Natural Science Foundation of China (61562091), Natural Science Foundation of Yunnan Province (2014FA023,201501CF00022), Program for Innovative Research Team in Yunnan University (XT412011), and Program for Excellent Young Talents of Yunnan University (XT412003).
Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated p...
关键词:Social networks INFLUENCE MAXIMIZATION Cascade model DIFFUSION DECAY SUBMODULARITY GREEDY algorithm 
Selecting Seeds for Competitive Influence Spread Maximization in Social Networks
《国际计算机前沿大会会议论文集》2016年第1期153-155,共3页Hong Wu Weiyi Liu Kun Yue Jin Li Weipeng Huang 
This paper was supported by the National Natural Science Foundation of China (61472345, 61562091), the Natural Science Foundation of Yunnan Province (2014FA023,2013FB010), the Program for Innovative Research Team in Yunnan University (XT412011), the Program for Excellent Young Talents of Yunnan University (XT412003), Yunnan Provincial Foundation for Leaders of Disciplines in Science and Technology (2012HB004), and the Research Foundation of the Educational Department of Yunnan Province (2014C134Y).
There exist two or more competing products in viral marketing, and the companies can exploit the social interactions of users to propagate the awareness of products. In this paper, we focus on selecting seeds for maxi...
关键词:Social networks COMPETITIVE INFLUENCE SPREAD Possible graph SUBMODULARITY CELF algorithm 
检索报告 对象比较 聚类工具 使用帮助 返回顶部