PIECEWISE

作品数:319被引量:354H指数:7
导出分析报告
相关领域:自动化与计算机技术理学更多>>
相关作者:刘敏王旭黄博许雪峰廖斌更多>>
相关机构:重庆交通大学南京理工大学成都东软信息技术学院湖北大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金国家教育部博士点基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Journal of Computational Mathematicsx
条 记 录,以下是1-10
视图:
排序:
THE CONVERGENCE OF TRUNCATED EULER-MARUYAMA METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH PIECEWISE CONTINUOUS ARGUMENTS UNDER GENERALIZED ONE-SIDED LIPSCHITZ CONDITION
《Journal of Computational Mathematics》2023年第4期663-682,共20页Yidan Geng Minghui Song Mingzhu Liu 
supported by the National Natural Science Foundation of China(Nos.11671113,12071101).
In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coef...
关键词:Stochastic differential equations Piecewise continuous argument One-sided Lipschitz condition Truncated Euler-Maruyama method 
ESTIMATION AND UNCERTAINTY QUANTIFICATION FOR PIECEWISE SMOOTH SIGNAL RECOVERY
《Journal of Computational Mathematics》2023年第2期246-262,共17页Victor Churchill Anne Gelb 
supported in part by NSF-DMS 1502640,NSF-DMS 1912685,AFOSR FA9550-18-1-0316;Office of Naval Research MURI grant N00014-20-1-2595.
This paper presents an application of the sparse Bayesian learning(SBL)algorithm to linear inverse problems with a high order total variation(HOTV)sparsity prior.For the problem of sparse signal recovery,SBL often pro...
关键词:High order total variation regularization Sparse Bayesian learning Analysis and synthesis Piecewise smooth function recovery 
PIECEWISE SPARSE RECOVERY VIA PIECEWISE INVERSE SCALE SPACE ALGORITHM WITH DELETION RULE
《Journal of Computational Mathematics》2020年第2期375-394,共20页Yijun Zhong Chongjun Li 
National Natural Science Foundation of China(Nos.11871137,11471066,11290143);the Fundamental Research of Civil Aircraft(No.MJ-F-2012-04)。
In some applications,there are signals with piecewise structure to be recovered.In this paper,we propose a piecewise_ISS(P_ISS)method which aims to preserve the piecewise sparse structure(or the small-scaled entries)o...
关键词:Inverse scale space Piecewise sparse Sparse recovery Small-scaled entries 
e1-ERROR ESTIMATES ON THE HAMILTONIAN-PRESERVING SCHEME FOR THE LIOUVILLE EQUATION WITH PIECEWISE CONSTANT POTENTIALS: A SIMPLE PROOF
《Journal of Computational Mathematics》2017年第6期814-827,共14页Xinchun Li 
This work is concerned with e1-error estimates on a Hamiltonian-preserving scheme for the Liouville equation with pieeewise constant potentials in one space dimension. We provide an analysis much simpler than these in...
关键词:Liouville equations Hamiltonian-preserving schemes Piecewise constant po-tentials e1-error estimate Half-order error bound Semiclassical limit. 
FOURTH-ORDER COMPACT SCHEMES FOR HELMHOLTZ EQUATIONS WITH PIECEWISE WAVE NUMBERS IN THE POLAR COORDINATES被引量:3
《Journal of Computational Mathematics》2016年第5期499-510,共12页Xiaolu Su Xiufang Feng Zhilin Li 
In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depend...
关键词:Helmholtz equation Compact finite difference schemes Polar coordinate Theimmersed interface method High order method. 
THE L1-ERROR ESTIMATES FOR A HAMILTONIAN-PRESERVING SCHEME FOR THE LIOUVILLE EQUATION WITH PIECEWISE CONSTANT POTENTIALS AND PERTURBED INITIAL DATA被引量:1
《Journal of Computational Mathematics》2011年第1期26-48,共23页Xin Wen 
We study the Ll-error of a Hamiltonian-preserving scheme, developed in [19], for the Liouville equation with a piecewise constant potential in one space dimension when the initial data is given with perturbation error...
关键词:Liouville equations Hamiltonian preserving schemes Piecewise constant po-tentials Error estimate Perturbed initial data Semiclassical limit. 
CONVERGENCE OF AN IMMERSED INTERFACE UPWIND SCHEME FOR LINEAR ADVECTION EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS Ⅱ: SOME RELATED BINOMIAL COEFFICIENT INEQUALITIES被引量:2
《Journal of Computational Mathematics》2009年第4期474-483,共10页Xin Wen 
supported in part by the Knowledge Innovation Project of the Chinese Academy of Sciences grants K5501312S1,K5502212F1,K7290312G7 and K7502712F7;NSFC grant 10601062
In this paper we give proof of three binomial coefficient inequalities. These inequalities are key ingredients in [Wen and Jin, J. Comput. Math. 26, (2008), 1-22] to establish the L^1-error estimates for the upwind ...
关键词:Binomial coefficient Linear advection equations Immersed interface upwindscheme Piecewise constant coefficients Error estimates. 
RESERVOIR DESCRIPTION BY USING A PIECEWISE CONSTANT LEVEL SET METHOD被引量:3
《Journal of Computational Mathematics》2008年第3期365-377,共13页Hongwei Li Center for Integrated Petroleum Research,University of Bergen,Norway Department of Mathematics,Capital Normal University,Beijing 100037,China Xuecheng Tai Department of Mathematics,University of Bergen,Norway Division of Mathematical Sciences,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore Sigurd Ivar Aanonsen Center for Integrated Petroleum Research,University of Bergen,Norway Department of Mathematics,University of Bergen,Norway 
the Norwegian Research Council,Petromaks Programme
We consider the permeability estimation problem in two-phase porous media flow. We try to identify the permeability field by utilizing both the production data from wells as well as inverted seismic data. The permeabi...
关键词:Inverse problem Level set method Piecewise constant Operator splitting Reservoir description 
CONVERGENCE OF AN IMMERSED INTERFACE UPWIND SCHEME FOR LINEAR ADVECTION EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS I:L^1-ERROR ESTIMATES被引量:7
《Journal of Computational Mathematics》2008年第1期1-22,共22页Xin Wen Shi Jin 
supported in part by the Knowledge Innovation Project of the Chinese Academy of Sciences Nos. K5501312S1 and K5502212F1, and NSFC grant No. 10601062;supported in part by NSF grant Nos. DMS-0305081 and DMS-0608720, NSFC grant No. 10228101 and NSAF grant No. 10676017
We study the L^l-error estimates for the upwind scheme to the linear advection equations with a piecewise constant coefficients modeling linear waves crossing interfaces. Here the interface condition is immersed into ...
关键词:Linear advection equations Immersed interface upwind scheme Piecewise constant coefficients Error estimate Half order error bound 
IMAGE SEGMENTATION BY PIECEWISE CONSTANT MUMFORD-SHAH MODEL WITHOUT ESTIMATING THE CONSTANTS被引量:6
《Journal of Computational Mathematics》2006年第3期435-443,共9页Xue-cheng Tai Chang-hui Yao 
In this work, we try to use the so-called Piecewise Constant Level Set Method (PCLSM) for the Mumford-Shah segmentation model. For image segmentation, the Mumford-Shah model needs to find the regions and the constan...
关键词:PCLSM Image Segmentation Mumford-Shah model. 
检索报告 对象比较 聚类工具 使用帮助 返回顶部