SAR_IMAGES

作品数:93被引量:190H指数:6
导出分析报告
相关作者:周思永王越陶然张志明更多>>
相关机构:北京理工大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国航空科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Chinese Journal of Electronicsx
条 记 录,以下是1-6
视图:
排序:
Aircraft Detection for HR SAR Images in Non-homogeneous Background Using GGMD-Based Modeling被引量:2
《Chinese Journal of Electronics》2019年第6期1271-1280,共10页HU Hao HUANG Lanqing YU Wenxian 
supported by the National Natural Science Foundation of China(No.61331015)
In the problem of aircraft detection for High resolution(HR)Synthetic aperture radar(SAR)images,the background areas commonly contain multiple land cover types,such as runways and grassland.The conventional Constant f...
关键词:Constant false ALARM rate(CFAR) Generalized gamma mixture distribution(GGMD) EXPECTATION maximization(EM) Synthetic aperture radar(SAR) 
A Novel Separability Objective Function in CNN for Feature Extraction of SAR Images被引量:4
《Chinese Journal of Electronics》2019年第2期423-429,共7页GAO Fei WANG Meng WANG Jun YANG Erfu ZHOU Huiyu 
funded by the National Natural Science Foundation of China(No.61771027,No.61071139,No.61471019,No.61501011,No.61171122);supported in part under the RSE-NNSFC Joint Project(2017-2019)(No.6161101383)with China University of Petroleum(Huadong);supported by Invest NI/Philips,UK EPSRC(No.EP/N011074/1);Royal Society-Newton Advanced Fellowship(No.NA160342)
Convolutional neural network(CNN) has become a promising method for Synthetic aperture radar(SAR) target recognition. Existing CNN models aim at seeking the best separation between classes, but rarely care about the s...
关键词:SYNTHETIC APERTURE radar(SAR) CONVOLUTION neural network(CNN) Classification Linear SEPARABILITY Objective function 
Object-Based Classification Method for PolSAR Images with Improved Scattering Powers and Contextual Features被引量:2
《Chinese Journal of Electronics》2017年第4期803-809,共7页YUAN Zhengwu CHEN Ran CHEN Cuiping LUO Xiaobo LIU Minghao 
supported by the National Natural Science Foundation of China(No.41301384);Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ120517,No.KJ1400420)
This paper proposes a new object-based classification method for Polarimetric synthetic aperture radar(Pol SAR) images, which considers scattering powers from an improved model-based polarimetric decomposition approac...
关键词:Object-based Polarimetric decomposi tion Contextual features Supervised locally linear embed ding(S-LLE) Polarimetric synthetic aperture radar(PolSAR) 
Fast Detection of Bridges in SAR Images被引量:2
《Chinese Journal of Electronics》2007年第3期481-484,共4页ZHANG Lili ZHANG Yanning LI Ying WANG Min 
This work is supported by the National Natural Science Foundation of China (No.60472072), the Specialized Research Foundation for the Doctoral Program of Higher Education (No.20040699034), the Aeronautical Science Foundation of China (No.04150370 and No.05153076) and Yellow River Conservancy Commission Research on ecological improment of Yellow River.
A method of bridges detection in SAR (Synthetic aperture radar) images without filtering is proposed in this paper. It includes three algorithms: river segmentation, Beamlet Transform and bridge detection. Since br...
关键词:Beamlet transform Bridges detection SAR images Line detection 
Automatic Change Detection from SAR Images Based on Fuzzy Entropy Principle被引量:4
《Chinese Journal of Electronics》2007年第1期76-81,共6页PAN Chunhong PRINET Veronique YANG Qing MA Songde 
In this paper, we propose a general framework for automatic change detection of flooded areas in bi-temporal Synthetic aperture radar (SAR) imagery. Based on the fuzzy entropy principle, a single thresholding method...
关键词:Change detection Fuzzy entropy VOTING Homogeneous regions Verification. 
An Adaptive Filtering Algorithm to Despeckle SAR Images Based on Scale Space Correlation
《Chinese Journal of Electronics》2005年第2期209-214,共6页RENLu XINGMengdao BAOZheng 
Based on the scale space correlation in wavelet domain, a new adaptive filtering algorithm is proposed to remove speckle in SAR images in this paper. This method decomposes SAR images into several scales with Stationa...
关键词:SAR 图像处理 自适应滤波 消除噪声 
检索报告 对象比较 聚类工具 使用帮助 返回顶部