GENETIC_ALGORITHM

作品数:1297被引量:3046H指数:17
导出分析报告
相关作者:朱剑英李敏强寇纪淞孙志峻沈庭芝更多>>
相关机构:南京航空航天大学北京理工大学东南大学清华大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家高技术研究发展计划国家重点基础研究发展计划中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Journal of Harbin Institute of Technology(New Series)x
条 记 录,以下是1-10
视图:
排序:
Robust Optimization Method of Cylindrical Roller Bearing by Maximizing Dynamic Capacity Using Evolutionary Algorithms
《Journal of Harbin Institute of Technology(New Series)》2022年第5期20-40,共21页Kumar Gaurav Rajiv Tiwari Twinkle Mandawat 
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h...
关键词:cylindrical roller bearing OPTIMIZATION robust design elitist non-dominating sorting genetic algorithm(NSGA-II) fatigue life dynamic load carrying capacity 
Hydraulic Self Servo Swing Cylinder Structure Optimization and Dynamic Characteristics Analysis Based on Genetic Algorithm被引量:1
《Journal of Harbin Institute of Technology(New Series)》2015年第4期36-46,共11页Lin Jiang Ruolin Wu Zhichao Zhu 
Sponsored by the National Natural Science Foundation of China(Grant No.61105086);Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2010-MS-12);Hubei Province Natural Science Foundation(Grant No.2010CDB0 3405)
The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure...
关键词:hydraulic self servo swing cylinder genetic algorithm natural frequency structural optimization dynamic characteristic 
Mission Planning and Action Planning for Agile Earth-Observing Satellite with Genetic Algorithm被引量:5
《Journal of Harbin Institute of Technology(New Series)》2013年第5期51-56,共6页Kai Sun Zheng-Yu Yang Pei Wang Ying-Wu Chen 
Sponsored by the National Natural Science Foundation of China(Grant No.70601035 and 70801062)
This paper concerns the mission scheduling problem for an agile Earth-observing satellite. Mission planning and action planning for the satellite are both taking into account. Multiple mission types( including multi-s...
关键词:SCHEDULING mission planning action planning agile Earth-observing satellite genetic algorithm 
Low complexity user scheduling algorithms for uplink multiuser MIMO systems
《Journal of Harbin Institute of Technology(New Series)》2012年第2期105-112,共8页李亮 邱玲 卫国 
Sponsored by the Technology Specific Project(Grant No. 2010ZX03002-003-01)
Two efficient and low complexity multiuser scheduling algorithms are proposed for the uplink multi- ple-input multiple-output systems in this paper. Conventionally, the exhaustive search algorithm (ESA) can give the...
关键词:Genetic algorithm (GA) multiuser scheduling muhiple-input multiple-output (MIMO) 
Aerodynamic design of transonic fan/compressor by 3D viscous RNS combined with genetic algorithms
《Journal of Harbin Institute of Technology(New Series)》2011年第2期143-148,共6页姜斌 王松涛 冯国泰 王仲奇 
Sponsored by the Major State Basic Research Development Progrma of China(Grant No. 2007CB210104)
This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on t...
关键词:transonic fan aerodynamic design shock structure genetic algorithm 
Pattern synthesis optimization of 3-D ODAR based on improved GA using LSFE method被引量:4
《Journal of Harbin Institute of Technology(New Series)》2011年第1期96-100,共5页龙伟军 贲德 BAKHSHI ASIM D 张弓 
Sponsored by the National Natural Science Foundation of China(Grant No.61071164)
Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal patter...
关键词:antenna radiation patterns genetic algorithm(GA) opportunistic digital array radar(ODAR) pattern synthesis the least square fitness estimation(LSFE) 
A novel genetic algorithm for vehicle routing problem with time windows
《Journal of Harbin Institute of Technology(New Series)》2010年第3期437-444,共8页刘云忠 
A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and cl...
关键词:genetic algorithm multiple species neural network premature problem vehicle routing problem with time windows 
Design optimization of transonic compressor stage using CFD and response surface model
《Journal of Harbin Institute of Technology(New Series)》2010年第1期112-118,共7页王祥锋 王松涛 韩万金 
In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface mo...
关键词:response surface models genetic algorithm transonic compressor optimization design numerical simulation 
ANN model of subdivision error based on genetic algorithm
《Journal of Harbin Institute of Technology(New Series)》2010年第1期131-136,共6页齐明 邹继斌 尚静 
According to the test data of subdivision errors in the measuring cycle of angular measuring system, the characteristics of subdivision errors generated by this system are analyzed. It is found that the subdivision er...
关键词:genetic algorithm artificial neural network (ANN) subdivision error angular measuring system error model 
Optimum design of carbon/carbon ablative property based on genetic algorithm
《Journal of Harbin Institute of Technology(New Series)》2009年第5期661-664,共4页白光辉 孟松鹤 刘洋 韦利明 姜澎 
Sponsored by the National Natural Science Foundation of China(Grant No.1057244)
An optimum design model has been proposed for carbon/carbon ablative property based on genetic algorithm,in which the optimum parameters are the number of woven satins,K of fiber bundles,layers per unit height,the ave...
关键词:carbon/carbon composites ablative property optimum design genetic algorithm 
检索报告 对象比较 聚类工具 使用帮助 返回顶部