ITERATIVE_LEARNING_CONTROL

作品数:104被引量:259H指数:9
导出分析报告
相关作者:林辉戴冠中严星刚祝乔更多>>
相关机构:北京科技大学西北工业大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划北京市自然科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Chinese Journal of Chemical Engineeringx
条 记 录,以下是1-5
视图:
排序:
Robustness of reinforced gradient-type iterative learning control for batch processes with Gaussian noise
《Chinese Journal of Chemical Engineering》2016年第5期623-629,共7页Xuan Yang Xiao'e Ruan 
Supported by National Natural Science Foundation of China(F010114-6097414061273135)
In this paper,a reinforced gradient-type iterative learning control pro file is proposed by making use of system matrices and a proper learning step to improve the tracking performance of batch processes disturbed by ...
关键词:Batch process lterative learning control Reinforced gradient Gaussian white noise 
Design and Analysis of Integrated Predictive Iterative Learning Control for Batch Process Based on Two-dimensional System Theory被引量:3
《Chinese Journal of Chemical Engineering》2014年第7期762-768,共7页陈宸 熊智华 钟宜生 
Supported in part by the State Key Development Program for Basic Research of China(2012CB720505);the National Natural Science Foundation of China(61174105,60874049)
Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model ...
关键词:lterative learning control Model predictive control Integrated control Batch process Two-dimensional systems 
An LMI Method to Robust Iterative Learning Fault-tolerant Guaranteed Cost Control for Batch Processes被引量:11
《Chinese Journal of Chemical Engineering》2013年第4期401-411,共11页王立敏 陈曦 高福荣 
Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...
关键词:two-dimensional Fornasini-Marchsini model batch process iterative learning control linear matrix inequality fault-tolerant guaranteed cost control 
An Anticipatory Terminal Iterative Learning Control Approach with Applications to Constrained Batch Processes被引量:4
《Chinese Journal of Chemical Engineering》2013年第3期271-275,共5页池荣虎 张德霞 刘喜梅 侯忠生 金尚泰 
Supported by the National Natural Science Foundation of China (60974040, 61120106009), the Research Award Foundation for the Excellent Youth Scientists of Shandong Province of China (BS2011DX010), and the High School Science & Technol- ogy Fund Planning Project of Shandong Province of China (J 10LG32).
This work presents an anticipatory terminal iterative learning control scheme for a class of batch proc- esses, where only the final system output is measurable and the control input is constant in each operations. Th...
关键词:"terminal iterative learning control batch-to-batch processes input saturation convergence analysis 
Optimal Iterative Learning Control for Batch Processes Based on Linear Time-varying Perturbation Model被引量:9
《Chinese Journal of Chemical Engineering》2008年第2期235-240,共6页熊智华 ZHANG Jie 董进 
Supported by the National Natural Science Foundation of China (60404012, 60674064), UK EPSRC (GR/N13319 and GR/R10875), the National High Technology Research and Development Program of China (2007AA04Z193), New Star of Science and Technology of Beijing City (2006A62), and IBM China Research Lab 2007 UR-Program.
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc...
关键词:iterative learning control linear time-varying perturbation model batch process 
检索报告 对象比较 聚类工具 使用帮助 返回顶部