LEO

作品数:795被引量:1524H指数:15
导出分析报告
相关领域:电子电信天文地球更多>>
相关作者:梁旭文刘业楠胡小工郭鹏唐小伟更多>>
相关机构:上海贝高福厨房用具有限公司中国科学院中国科学院大学武汉大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划浙江省自然科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Communications in Theoretical Physicsx
条 记 录,以下是1-10
视图:
排序:
High-dimensional nonlinear variable separation solutions and novel wave excitations for the(4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
《Communications in Theoretical Physics》2024年第11期1-11,共11页Zu-feng Liang Xiao-yan Tang Wei Ding 
supported by the National Natural Science Foundation of China (Grant Nos.12275085 and 12235007);the Science and Technology Commission of Shanghai Municipality (Grant No.22DZ2229014)。
Considering the importance of higher-dimensional equations that are widely applied to real nonlinear problems,many(4+1)-dimensional integrable systems have been established by uplifting the dimensions of their corresp...
关键词:(4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation variable separation solution periodic breathing lumps multi-dromion-ring-type instanton hybrid waves on a doubly periodic wave background 
Interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation in incompressible fluid被引量:1
《Communications in Theoretical Physics》2023年第8期1-13,共13页Hongcai Ma Xue Mao Aiping Deng 
This paper aims to search for the solutions of the(2+1)-dimensional extended Boiti–Leon–Manna–Pempinelli equation.Lump solutions,breather solutions,mixed solutions with solitons,and lump-breather solutions can be o...
关键词:(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation long-wave limit method conjugate complex method interaction solutions dynamic characteristics 
Dynamics of a D’Alembert wave and a soliton molecule for an extended BLMP equation
《Communications in Theoretical Physics》2021年第3期23-27,共5页Bo Ren 
supported by the National Natural Science meters restrain as the relation:Foundation of China Grant No.11775146.
The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory.The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial different...
关键词:(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation Painleve analysis D’Alembert waves soliton molecule 
Novel localized wave solutions of the (2+1)-dimensional Boiti–Leon–Manna–Pempinelli equation
《Communications in Theoretical Physics》2020年第12期105-115,共11页Li Sun Jiaxin Qi Hongli An 
supported by the National Natural Science Foundation of China under grant No.11775116;Jiangsu Qinglan highlevel talent Project。
Based on a special transformation that we introduce,the N-soliton solution of the(2+1)-dimensional Boiti–Leon–Manna–Pempinelli equation is constructed.By applying the long wave limit and restricting certain conjuga...
关键词:Boiti-Leon-Manna-Pempinelli equation Hirota bilinear method localized interaction wave solution 
On New Similarity Solutions of the Boiti–Leon–Pempinelli System
《Communications in Theoretical Physics》2014年第1期121-126,共6页Mukesh Kumar Raj Kumar 
In the present work, the new exact solutions of the Boiti-Leon-Pempinelli system have been found. The system has extensive physical background. The exact solutions of the Boiti-Leon-Pempinelli system are investigated ...
关键词:Boiti-Leon-Pempinelli system similarity transformation method Lie group theory soliton solutions 
Stair and Step Soliton Solutions of the Integrable (2+1) and (3+1)-Dimensional Boiti-Leon-Manna-Pempinelli Equations被引量:9
《Communications in Theoretical Physics》2012年第12期785-794,共10页M.T. Darvishi M. Najafi L. Kavitha M. Venkatesh 
the financial support from NBHM, India in the form of major research project, BRNS, India in the form of Young Scientist Research Award
The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper...
关键词:multiple exp-function method Boiti-Leon-Manna-Pempinelli equation exact solution multi-soliton solution 
Quasi-Periodic Waves and Asymptotic Property for Boiti-Leon-Manna-Pempinelli Equation被引量:1
《Communications in Theoretical Physics》2010年第8期208-214,共7页罗琳 
Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1412800; the Innovation Program of Shanghai Municipal Education Commission under Grant No.10ZZ131
In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in ...
关键词:BLMP equation Hirota bilinear method Riemann theta function quasi-periodic wave solutions 
Exact Solutions of (2+1)-Dimensional Boiti-Leon-Pempinelle Equation with (G'/G)-Expansion Method
《Communications in Theoretical Physics》2010年第7期35-37,共3页熊守全 夏铁成 
Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800;the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806;the Shanghai Leading Academic Discipline Project under Grant No.J50101;Key Disciplines of Shanghai Municipality under Grant No.S30104
In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threear...
关键词:(2+1)-dimensional Boiti-Leon-Pempinelle equation (G′/G)-expansion method hyperbolic function solutions trigonometric function solutions 
Direct Approach to Construct the Periodic Wave Solutions for Two Nonlinear Evolution Equations被引量:2
《Communications in Theoretical Physics》2009年第9期473-478,共6页CAI Ke-Jie TIAN Bo ZHANG Huan MENG Xiang-Hua 
Supported by the National Natural Science Foundation of China under Grant No.60772023;the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04;Beijing University of Aeronautics and Astronautics,by the National Basic Research Program of China (973 Program) under Grant No.2005CB321901;the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 200800130006,Chinese Ministry of Education
With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pemp...
关键词:periodic wave solutions Hirota-Satsuma equation for shallow water waves Boiti-Leon-Manna-Pempinelli equation Hirota method Riemann theta function 
Localized Structures on Periodic Background Wave of (2+1)-Dimensional Boiti-Leon-Pempinelli System via an Object Reduction被引量:1
《Communications in Theoretical Physics》2007年第5X期811-814,共4页FANG Jian-Ping MA Song-Hua FEI Jin-Xi HONG Bi-Hai ZHENG Chun-Long 
The project supported by the Natural Science Foundation of Zhejiang Province under Grant No. Y604106 and the Natural Science Foundation of Zhejiang Lishui University under Grant No. FC06001
In this paper, we present an object reduction for nonlinear partial differential equations. As a concrete example of its applications in physical problems, this method is applied to the (2+1)-dimensional Boiti-Leon...
关键词:object reduction (2+1)-dimensional Boiti-Leon-Pempinelli system exact solution 
检索报告 对象比较 聚类工具 使用帮助 返回顶部