彭黎霞

作品数:13被引量:15H指数:2
导出分析报告
供职机构:福建信息职业技术学院更多>>
发文主题:欧氏环剩余类环矩阵素元解题方法更多>>
发文领域:理学文化科学更多>>
发文期刊:《数学杂志》《莆田学院学报》《福建信息技术教育》《福建教育学院学报》更多>>
所获基金:福建省教育厅科技项目福建省教育厅资助项目福建省自然科学基金福建省教育厅社会科学研究项目更多>>
-

检索结果分析

署名顺序

  • 全部
  • 第一作者
结果分析中...
条 记 录,以下是1-10
视图:
排序:
高职数学课程改革探索和实践——以福建信息职业技术学院商贸系为例被引量:1
《现代职业教育》2019年第21期146-147,共2页林丽英 彭黎霞 
从福建信息职业技术学院商贸系的高职数学教学出发,对高职数学教学中存在的问题进行分析,以高职教育的目标为标准,围绕基础课程为企业需求和专业服务的需要,对高职数学教学内容、教学评价、教学方法进行改革。
关键词:企业需求 专业服务 高职数学 教学改革 
大陆高职院校课程教学中引入服务学习的尝试——台湾地区高校服务学习模式的启示被引量:1
《闽西职业技术学院学报》2017年第1期13-16,共4页彭黎霞 
福建省教育厅社会科学项目"海峡两岸高职院校通识教育之比较研究(课题编号:JAS14584)"
服务学习是一种集社区服务与专业学习于一体的新的教学模式,它真正体现了"在做中学,在学中做"的思想。通过服务学习,学生不仅学习了知识,还学会了做人。经过二十多年的努力,台湾地区高校服务学习模式已经发展成熟。大陆高职院校可借鉴...
关键词:高职院校 课程教学改革 台湾地区服务学习模式 
层次分析法在数模竞赛选手选拔中的应用
《福建信息技术教育》2015年第3期23-26,共4页彭黎霞 
利用层次分析法,在综合地分析与评价数学建模竞赛选手所需具备的各项素质与能力的基础上,建立竞赛选手选拔的层次分析模型,运用矩阵计算的方法,得到反映各选手综合能力的组合权重向量,为竞赛选手的选拔提供了科学的依据。
关键词:层次分析法 竞赛选手 选拔 矩阵计算 
一个有限环的零因子图性质
《宜宾学院学报》2013年第6期19-21,共3页彭黎霞 
研究了二次代数整数环Z[u]={a+bu|a,b∈Z}(其中u=1/2+((11)~(1/2)1/2i)的模n剩余类环的零因子图的有关性质,讨论了当n不同情况时,它的直径、围长的取值情况.
关键词:代数整数环 剩余类环 零因子图 直径 围长 
一个欧氏环的剩余类环及其对合性
《福建师范大学学报(自然科学版)》2011年第6期15-18,共4页彭黎霞 张圣贵 
福建省教育厅科技项目(JA08259)
利用数论的理论与方法,研究了一个二次整环的剩余类环Z[u]/〈α〉的表示形式,并得到了剩余类环是对合环的充要条件是α=0或α=±u.
关键词:整环 剩余类环 对合环 
有穷级亚纯函数的唯一性
《福建信息技术教育》2011年第1期28-30,共3页陈柳彩 彭黎霞 
应用Nevanlinna第二基本定理、亚纯函数级的性质,讨论了有穷级亚纯函数的唯一性,所得的结论推广了罗旭丹的一些结果。
关键词:亚纯函数 唯一性  有穷级亚纯函数 
一个欧氏环的素因子分解方法被引量:4
《数学杂志》2009年第4期557-562,共6页彭黎霞 张圣贵 
福建省教育厅科技项目(JA08259)
本文研究了整数环的一个代数扩环的性质.利用最优化理论证明了这个代数扩环是一个欧氏环,给出了它的单位和素元的刻画,得到了对这个代数扩环中任意素进行素因子分解的方法.
关键词:欧氏环 单位 素元 素因子分解 
欧氏环例子的构造方法及其性质被引量:1
《福建师范大学学报(自然科学版)》2009年第1期1-6,共6页彭黎霞 张圣贵 
福建省自然科学基金资助项目(2006J0202);福建省教育厅基金资助项目(JA08259)
构造了一个新的欧氏环Z[u],其中u是以x3-x2-1为极小多项式的复数,证明了Z[u]与Z上的矩阵环的一个子环同构,设计了一种计算商环Z[u]/〈a+bu+cu2〉的代表元的算法.
关键词:欧氏环 极小多项式 扩环 整数环 商环 
三阶Fibonacci数列的性质与应用被引量:4
《莆田学院学报》2006年第5期5-8,11,共5页彭黎霞 
运用矩阵方法,对三阶Fibonacci数列进行了较深入的研究。求得了三阶Fibonacci数列的通项公式的多种表示法,并得到了一些与Fibonacci数列相似的性质,如与Cassini公式相似的三阶Cassini公式等。同时也涉及了三阶Fibonacci数列的运用问题。
关键词:三阶Fibonacci数列 通项公式 Cassini公式 矩阵 
Fibonacci数列的性质及矩阵证明被引量:4
《闽江学院学报》2006年第5期42-46,57,共6页彭黎霞 
运用矩阵方法证明了Fibonacci数列的通项公式及Cassini公式,并对Cassini公式进行了推广,进而得到一个结论-由连续的m×r个Fibonacci数的k次方所组成的m行r列矩阵D m×rk,当r,m≥k+1,k=1,2,3时,矩阵的秩都为k+1.
关键词:FIBONACCI数列 Cassini公式 矩阵  
检索报告 对象比较 聚类工具 使用帮助 返回顶部