-

检索结果分析

结果分析中...
检索条件:"关键词=ycomputation "
条 记 录,以下是1-1
视图:
排序:
显示条数:
A survey on federated learning:a perspective from multi-party computation被引量:2
《Frontiers of Computer Science》2024年第1期93-103,共11页Fengxia LIU Zhiming ZHENG Yexuan SHI Yongxin TONG Yi ZHANG 
partially supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.U21A20516,62076017,and 62141605);the Funding of Advanced Innovation Center for Future Blockchain and Privacy Computing(No.ZF226G2201);the Beihang University Basic Research Funding(No.YWF-22-L-531);the Funding(No.22-TQ23-14-ZD-01-001)and WeBank Scholars Program.
Federated learning is a promising learning paradigm that allows collaborative training of models across multiple data owners without sharing their raw datasets.To enhance privacy in federated learning,multi-party comp...
关键词:sfederated learning multi-party ycomputation privacy-preserving data mining distributed learning 
检索报告 对象比较 聚类工具 使用帮助 返回顶部