检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Aktham E.Shoukry Ahmed H.El-Banbi Helmy Sayyouh
机构地区:[1]Petroleum Engineering,University of Wyoming,Laramie,WY,USA [2]Petroleum Department,Faculty of Engineering,Cairo University,Giza,Egypt [3]Petroleum Engineering,American University in Cairo(AUC),Giza,Egypt
出 处:《Petroleum Science》2020年第1期232-241,共10页石油科学(英文版)
摘 要:Cubic equation-of-state solid models are one of the most widely used models to predict asphaltene precipitation behavior.Thermodynamic parameters are needed to model precipitation under different pressures and temperatures and are usually obtained through tuning with multi asphaltene onset experiments.For the purpose of enhancing the cubic Peng–Robinson solid model and reducing its dependency on asphaltene experiments,this paper tests the use of aromatics and waxes correlations to obtain these thermodynamic parameters.In addition,weighted averages between both correlations are introduced.The averaging is based on reported saturates,aromatics,resins,asphaltene(SARA)fractions,and wax content.All the methods are tested on four oil samples,with previously published data,covering precipitation and onset experiments.The proposed wax-asphaltene average showed the best match with experimental data,followed by a SARA-weighted average.This new addition enhances the model predictability and agrees with the general molecular structure of asphaltene molecules.Cubic equation-of-state solid models are one of the most widely used models to predict asphaltene precipitation behavior.Thermodynamic parameters are needed to model precipitation under different pressures and temperatures and are usually obtained through tuning with multi asphaltene onset experiments. For the purpose of enhancing the cubic Peng–Robinson solid model and reducing its dependency on asphaltene experiments, this paper tests the use of aromatics and waxes correlations to obtain these thermodynamic parameters. In addition, weighted averages between both correlations are introduced. The averaging is based on reported saturates, aromatics, resins, asphaltene(SARA) fractions, and wax content. All the methods are tested on four oil samples, with previously published data, covering precipitation and onset experiments. The proposed wax-asphaltene average showed the best match with experimental data, followed by a SARA-weighted average. This new addition enhances the model predictability and agrees with the general molecular structure of asphaltene molecules.
关 键 词:ASPHALTENE PRECIPITATION ASPHALTENE ONSET pressure ASPHALTENE PRECIPITATION MODELING ASPHALTENE THERMODYNAMICS CUBIC equation of state
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15