检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于涛[1,2] 李传宪 张杰[3] 刘丽君[4] 郭悠悠 段坤华 YU Tao;LI Chuan-xian;ZHANG Jie;LIU Li-jun;GUO You-you;DUAN Kun-hua(College of Pipeline and Civil Engineering,China University of Petroleum(East China),Shandong Qingdao 266580,China;PetroChina Oil&Gas Pipeline Control Center,Beijing100007,China;PetroChina West Pipeline Company,Xinjiang Wulumuqi 830000,China;Beijing Richfit Information Technology Co.,Ltd.,Beijing100007,China)
机构地区:[1]中国石油大学(华东)储运与建筑工程学院,山东青岛266580 [2]中国石油北京油气调控中心,北京100007 [3]中国石油西部管道公司,新疆乌鲁木齐830000 [4]北京中油瑞飞信息技术有限责任公司,北京100007
出 处:《当代化工》2020年第4期751-756,共6页Contemporary Chemical Industry
基 金:国家自然科学基金,项目号:51774311;中国博士后科学基金,项目号:2019TQ0354;青岛博士后研究人员应用研究项目
摘 要:长输热油管道运行过程中,油温的准确预测是管道安全优化生产的前提。针对以往油温预测方法的误差大,推广应用难等问题,提出利用BackPropagation(BP)神经网络和思维进化算法(MindEvolutionary Algorithm,MEA)优化算法,建立MEA-BP油温预测模型。利用相关性算法获得模型输入参数,下载处理SCADA系统实际生产数据,对模型进行训练。将MEA-BP预测模型应用于实际生产,油温预测误差为0.49℃,相比理论公式及其它预测模型,具有泛化性好、预测准确性高等特点。通过研究获得基于大数据分析方法可有效实现长输管道业务需要,为管道大数据平台分析应用,未来智能化控制奠定基础。During the operation of long-distance hot oil pipelines,the accurate prediction of oil temperature is the prerequisite for safe and optimized production of pipelines.Aiming at the large error of the oil temperature prediction method and the difficulty of popularization and application,the Back Propagation(BP)neural network and the Mind Evolutionary Algorithm(MEA)optimization algorithm was used to establish the MEA-BP oil temperature prediction model.The correlation algorithm was used to obtain the model input parameters,and the actual production data of the SCADA system were downloaded and processed,and the model was trained.The MEA-BP prediction model was applied to actual production,and the oil temperature prediction error was 0.49℃.Compared with the theoretical formula and other prediction models,it has the characteristics of good generalization and high prediction accuracy.The research based on the big data analysis method can effectively meet the long-distance pipeline business needs,and lay the foundation for the analysis and application of the pipeline big data platform and the future intelligent control.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15