检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙浩瑜 姜鑫 陈守臻[1] 曲思凤[1] 史本康[1] SUN Haoyu;JIANG Xin;CHEN Shouzhen;QU Sifeng;SHI Benkang(Department of Urology,Qilu Hospital of Shandong University,Jinan 250012,Shandong,China)
机构地区:[1]山东大学齐鲁医院泌尿外科,山东济南250012
出 处:《山东大学学报(医学版)》2022年第6期46-50,共5页Journal of Shandong University:Health Sciences
基 金:国家自然科学基金(81970661)
摘 要:目的评估多参数磁共振成像(mpMRI)前列腺影像报告和数据系统(PIRADS)v2.1和前列腺健康指数(phi)在前列腺特异性抗原(PSA)4~10 ng/mL时对临床有意义前列腺癌(CSPCa)的诊断价值;建立PIRADS评分联合phi诊断CSPCa的预测模型。方法研究共纳入142例前列腺穿刺患者,采用二元Logistic回归分析各变量与CSPCa之间的相关性,建立预测模型Logit(P)。采用受试者工作曲线(ROC)评估各变量的诊断效能。选取各变量的最佳截断值并评估各变量诊断效能,McNemar检验用于比较各变量的诊断效能差异。结果142例患者中41例(28.87%)在前列腺穿刺活检中诊断为CSPCa。二元Logistic回归分析结果显示,PIRADS评分越高,存在CSPCa的风险越高(OR=3.521,P<0.001)。建立预测模型:Logit(P)=1.123×PIRADS评分+0.048×phi-6.287。预测模型Logit(P)的曲线下面积(AUC)高于%fPSA(P=0.011)、phi(P=0.041)和PIRADS评分(P=0.003),差异均有统计学意义。Logit(P)的阳性预测值(PPV)和阴性预测值(NPV)分别为62.75%和96.70%。结论mpMRI PIRADS评分在前列腺肿瘤的筛查中具有较高的特异度和PPV,但敏感度相对较低。PIRADS评分联合phi建立的预测模型Logit(P)具有更高的敏感度,能有效降低CSPCa的漏诊率和不必要的前列腺穿刺。Objective To evaluate the value of multiparametric magnetic resonance imaging(mpMRI),prostate imaging reporting and data system(PIRADS)v2.1 and prostate health index(phi)in the diagnosis of clinically significant prostate cancer(CSPCa)within the prostate specific antigen(PSA)grey zone,and to establish a prediction model for CSPCa based on PIRADS score combined with phi.Methods A total of 142 patients who underwent prostate biopsy were enrolled.Binary Logistic regression was used to analyze the correlation between the variables with CSPCa.Logit(P)was established.Receiver operating characteristic(ROC)curve was drawn to evaluate the diagnostic efficacy of each variable.The optimal cut-off value and the diagnostic efficiency of each variable was calculated,and McNemar test was used to compare the differences in diagnostic efficacy among various variables.Results CSPCa was detected in 41(28.87%)patients.Binary Logistic regression showed CSPCa was significantly associated with higher PIRADS score(OR=3.521,P<0.001).The prediction model was established as:Logit(P)=1.123×PIRADS score+0.048×phi-6.287.The area under the ROC curve(AUC)of Logit(P)was higher than%fPSA(P=0.011),phi(P=0.041)and PIRADS score(P=0.003),and the differences were statistically significant.The positive predictive value(PPV)and negative predictive value(NPV)of Logit(P)were 62.75%and 96.70%,respectively.Conclusion The mpMRI PIRADS score has high specificity and PPV in prostate tumor screening,but relatively low sensitivity.The prediction model Logit(P)established by PIRADS score combined with phi has higher sensitivity and can effectively reduce the rate of misdiagnosis and unnecessary prostate biopsy of CSPCa.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30