检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:葛艳[1] 杜坤钰 杜军威[1] 陈卓[1] GE Yan;DU Kunyu;DU Junwei;CHEN Zhuo(Institute of Information Science and Technology,Qingdao University of Science and Technology,Qingdao,Shandong 266061,China)
机构地区:[1]青岛科技大学信息科学技术学院,山东青岛266061
出 处:《中文信息学报》2021年第10期81-89,共9页Journal of Chinese Information Processing
基 金:国家自然科学基金(61973180,61273180);山东省重点研发计划(2018GGX101052);山东省自然科学基金(ZR2019MF033)
摘 要:实体关系抽取是信息抽取领域的重要研究内容,对知识库的自动构建起着至关重要的作用。针对非结构化文本实体关系抽取存在上下文环境信息难以准确表征,致使现有抽取模型准确率不能满足实际应用需求的问题,该文提出了一种新型的实体关系抽取模型BiGRU-Att-PCNN。该模型是基于混合神经网络,首先,构建双向门控循环单元(BiGRU)以更好地获取文本序列中的上下文语序的相关信息;然后,采用注意力(Attention)机制来达到自动关注对关系影响力高的序列特征的目的;最后,通过采用分段卷积神经网络(PCNN),从调整后的序列中较好地学习到了相关的环境特征信息来进行关系抽取。该模型在公开的英文数据集SemEval 2010 Task 8上取得了86.71%的F_(1)值,实验表明,该方法表现出了较好的性能,为信息抽取领域实体关系的自动获取提供了新的方法支持。Entity relation extraction is an important research issue in the field of information extraction,which plays an important role in the automatic construction of knowledge base.This paper proposes a new entity relationship extraction model based on hybrid neural network,named BiGRU-Att-PCNN.Firstly,a Bi-directional Gated Recurrent Unit(BiGRU)is constructed to better obtain the relevant information of context word order in text sequence.Then,the attention mechanism is used to automatically capture the sequence features with high influence on the relationship.Finally,with Piecewise Convolution Neural Network(PCNN),the relevant environmental feature information is better learned from the adjusted sequence for relation extraction.Experiment on SemEval 2010 Task 8 proves that the proposed method achieves 86.71%in F_(1) value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15