检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑素佩[1] 建芒芒 封建湖[1] 翟梦情 ZHENG Supei;JIAN Mangmang;FENG Jianhu;ZHAI Mengqing(School of Science,Chang’an University,Xi’an,Shaanxi 710064,China)
出 处:《计算物理》2022年第6期677-686,共10页Chinese Journal of Computational Physics
基 金:国家自然科学基金(11971075);陕西省自然科学基金青年项目(2020JQ-338,2020JQ-342)资助
摘 要:证明Weighted Essentially Non-Oscillatory with Adaptive Order(WENO-AO)重构的保号性,确保在单元交界面处重构值的跳跃符号与原始值的跳跃符号保持一致,给出保号性成立的充分条件。WENO-AO重构通过高阶多项式与低阶重构的非线性组合来实现自适应收敛阶,在求解不连续点附近的解时,WENO-AO重构比经典WENO重构更精确,且具有很好的稳定性。采用中心迎风数值通量,结合时间方向的三阶强稳定Runge-Kutta法计算。数值结果表明该格式最高可达五阶精度,且具有分辨率高、鲁棒性强等良好特性,并能够准确地捕捉间断位置,有效抑制伪振荡的产生。In this paper we give a sufficient condition for sign preservation in Weighted Essentially Non⁃Oscillatory with Adaptive Order(WENO⁃AO)reconstruction,which means to keep same sign for jumping at interfaces.WENO⁃AO reconstruction realizes self⁃adaptive accuracy through an nonlinear combination of high⁃order polynomial and low⁃order reconstruction.In solving solution near discontinuous points,WENO⁃AO reconstruction is more accurate than the classical WENO reconstruction,and it keeps good stability.The scheme is obtained by combining a central upwind numerical flux with a third⁃order strongly stable Runge⁃Kutta method.Numerical results show that the scheme has fifth order accuracy.It has characteristics of high resolution and strong robustness.It captures accurately discontinuous positions and avoids effectively the generation of spurious oscillation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222