Discriminative stacked autoencoder for feature representation and classification  被引量:1

Discriminative stacked autoencoder for feature representation and classification

在线阅读下载全文

作  者:Yiping GAO Xinyu LI Liang GAO 

机构地区:[1]School of Mechanical,Huazhong University of Science and Technology,Wuhan 430072,China

出  处:《Science China(Information Sciences)》2020年第2期93-94,共2页中国科学(信息科学)(英文版)

基  金:supported in part by National Natural Science Foundation of China(Grant No.51721092);Natural Science Foundation of Hubei Province(Grant No.2018CFA078);the Program for HUST Academic Frontier Youth Team(Grant No.2017QYTD04).

摘  要:Dear editor,Recently,deep learning(DL)has become a hot research topic and as one of the most well-known DL models,stacked autoencoder(SAE)[1]has received increasing attention.In SAE,layer-wise pretraining is the basic mechanism for automatic feature extraction and it can also avoid gradient vanishing while constructing deep architectures.

关 键 词:SAE Discriminative stacked autoencoder for FEATURE REPRESENTATION and CLASSIFICATION 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象