REPRESENTATION

作品数:930被引量:1111H指数:13
导出分析报告
相关作者:徐亮孙正兴张福炎熊洪允郝永华更多>>
相关机构:中国科学院大学浙江大学西安外国语大学华中师范大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家教育部博士点基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Causal Representation Enhances Cross-Domain Named Entity Recognition in Large Language Models
《Computers, Materials & Continua》2025年第5期2809-2828,共20页Jiahao Wu Jinzhong Xu Xiaoming Liu Guan Yang Jie Liu 
supported by National Natural Science Foundation of China Joint Fund for Enterprise Innovation Development(U23B2029);National Natural Science Foundation of China(62076167,61772020);Key Scientific Research Project of Higher Education Institutions in Henan Province(24A520058,24A520060,23A520022);Postgraduate Education Reform and Quality Improvement Project of Henan Province(YJS2024AL053).
Large language models cross-domain named entity recognition task in the face of the scarcity of large language labeled data in a specific domain,due to the entity bias arising from the variation of entity information ...
关键词:Large language model entity bias causal graph structure 
Representations of Drinfeld doubles of Radford Hopf algebras
《Science China Mathematics》2025年第4期761-784,共24页Hua Sun Hui-Xiang Chen 
supported by National Natural Science Foundation of China(Grant Nos.12201545 and 12071412)。
In this article,we investigate the representations of the Drinfeld doubles D(Rmn(q))of the Radford Hopf algebras Rmn(q)over an algebraically closed field k,where m>1 and n>1 are integers and q∈k is a root of unity of...
关键词:Drinfeld double Radford algebra REPRESENTATION indecomposable module Auslander-Reiten sequence 
Segmentation of CAD models using hybrid representation
《虚拟现实与智能硬件(中英文)》2025年第2期188-202,共15页Claude UWIMANA Shengdi ZHOU Limei YANG Zhuqing LI Norbelt MUTAGISHA Edouard NIYONGABO Bin ZHOU 
Supported by the National Key Research and Development Program of China(2024YFB3311703);National Natural Science Foundation of China(61932003);Beijing Science and Technology Plan Project(Z221100006322003).
In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using singl...
关键词:B-RepNet hybrid segmentation CAD models classification MeshCNN MeshCAD-Net 
Learning Hierarchical Adaptive Code Clouds for Neural 3D Shape Representation
《Machine Intelligence Research》2025年第2期304-323,共20页Yuanxun Lu Xinya Ji Hao Zhu Xun Cao 
supported by the National Natural Science Foundation of China(Nos.62001213 and 62025108).
Neural implicit representation(NIR)has attracted significant attention in 3D shape representation for its efficiency,generalizability,and flexibility compared with traditional explicit representations.Previous works u...
关键词:Representation learning shape analysis deep implicit function 3D reconstruction 3D modeling 
GTE:learning code AST representation efficiently and effectively
《Science China(Information Sciences)》2025年第3期389-390,共2页Yihao QIN Shangwen WANG Bo LIN Kang YANG Xiaoguang MAO 
With the development of deep learning in recent years,code representation learning techniques have become the foundation of many software engineering tasks such as program classification[1]and defect detection.Earlier...
关键词:SUCH LEARNING REPRESENTATION 
Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network
《Computers, Materials & Continua》2025年第3期4287-4300,共14页Zhen-Yu Chen Feng-Chi Liu Xin Wang Cheng-Hsiung Lee Ching-Sheng Lin 
supported by the National Science and Technology Council(NSTC),Taiwan,under Grants Numbers 112-2622-E-029-009 and 112-2221-E-029-019.
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l...
关键词:Knowledge graph embedding parameter efficiency representation learning reserved entity and relation sets hierarchical attention network 
Multi-Scale Feature Fusion and Advanced Representation Learning for Multi Label Image Classification
《Computers, Materials & Continua》2025年第3期5285-5306,共22页Naikang Zhong Xiao Lin Wen Du Jin Shi 
supported by the National Natural Science Foundation of China(62302167,62477013);Natural Science Foundation of Shanghai(No.24ZR1456100);Science and Technology Commission of Shanghai Municipality(No.24DZ2305900);the Shanghai Municipal Special Fund for Promoting High-Quality Development of Industries(2211106).
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat...
关键词:Image classification MULTI-LABEL multi scale attention mechanisms feature fusion 
Ontology Matching Method Based on Gated Graph Attention Model
《Computers, Materials & Continua》2025年第3期5307-5324,共18页Mei Chen Yunsheng Xu Nan Wu Ying Pan 
supported by the National Natural Science Foundation of China(grant numbers 62267005 and 42365008);the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing.
With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms o...
关键词:Ontology matching representation learning OWL2Vec*method graph attention model 
Synergistic Multi-Drug Combination Prediction Based on Heterogeneous Network Representation Learning with Contrastive Learning
《Tsinghua Science and Technology》2025年第1期215-233,共19页Xin Xi Jinhui Yuan Shan Lu Jieyue He 
supported by National Key R&D Program of China(No.2019YFC1711000);Collaborative Innovation Center of Novel Software Technology and Industrialization.
The combination of multiple drugs is a significant therapeutic strategy that can enhance treatment effectiveness and reduce medication side effects.However,identifying effective synergistic drug combinations in a vast...
关键词:western medicine synergistic drug combination heterogeneous network contrastive learning 
A data representation method using distance correlation
《Frontiers of Computer Science》2025年第1期1-14,共14页Xinyan LIANG Yuhua QIAN Qian GUO Keyin ZHENG 
supported by the National Key R&D Program of China(No.2021ZD0112400);the National Natural Science Foundation of China(Grant Nos.62306171,62136005,61976129,62106132,61906114,61906115);the Science and Technology Major Project of Shanxi(No.202201020101006);the Young Scientists Fund of the Natural Science Foundation of Shanxi(Nos.202203021222183,20210302124549);the Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province(Nos.CICIP2023005,CICIP202205);the Science and Technology Innovation Plan for Colleges and Universities of Shanxi Province(2022L296);and Taiyuan University of Science and Technology Doctoral Research Start-up Fund Project(20222106).
Association in-between features has been demonstrated to improve the representation ability of data. However, the original association data reconstruction method may face two issues: the dimension of reconstructed dat...
关键词:ASSOCIATION REPRESENTATION distance correlation CLASSIFICATION 
检索报告 对象比较 聚类工具 使用帮助 返回顶部