检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张雷[1] 田雪咏 史立伟 卢文霞 刘立博 任芳贤 Zhang Lei;Tian Xueyong;Shi Liwei;Lu Wenxia;Liu Libo;Ren Fangxian(School of Environmental and Chemical Engineering,Shenyang University of Technology,Shenyang 110870,China)
机构地区:[1]沈阳工业大学环境与化学工程学院,沈阳110870
出 处:《环境工程》2023年第S01期174-178,共5页Environmental Engineering
基 金:北方工业园区污水资源化及其智能控制技术(2021JH1/10400031)
摘 要:膜生物反应器(MBR)是一种新型的废水处理和水资源回收技术,在我国水处理领域有着极为广泛的应用。但是膜污染是MBR运用过程中不可避免的问题,严重影响其进一步推广。首先,当前膜污染防治策略进行分类并概况了膜系统的污染因素,综述了近年来国内外针对膜污染因素的传统防治策略;其次,理了基于人工智能的膜污染外在特征参数预测以及膜污染防治优化策略的最新成果;最后展望了神经网络在MBR膜污染防治策略中潜在应用场景。Membrane bioreactor(MBR)is a new type of wastewater treatment and water resource recovery technology,which is widely used in the field of water treatment in my country.However,membrane fouling is an inevitable problem in the application of MBR,which seriously affects its further promotion.Firstly,the current prevention and control strategies of membrane fouling are classified and the fouling factors of membrane system are summarized,and the traditional prevention and control strategies for membrane fouling factors at home and abroad in recent years are reviewed.The latest results of the prevention and control optimization strategy,and finally the potential application scenarios of neural network in the prevention and control strategy of MBR membrane fouling are prospected.
分 类 号:X703[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117