检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张庆港 张向军 余海坤 卢小平[1] 李国清[1,2] Zhang Qinggang;Zhang Xiangjun;Yu Haikun;Lu Xiaoping;Li Guoqing(Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines,MNR,Henan Polytechnic University,Jiaozuo,Henan 454003,China;Henan Remote Sensing and Mapping Institute,Zhengzhou 450003,China)
机构地区:[1]河南理工大学自然资源部矿山时空信息与生态修复重点实验室,河南焦作454003 [2]河南省遥感测绘院,郑州450003
出 处:《测绘科学》2022年第11期64-72,共9页Science of Surveying and Mapping
基 金:国家重点研发计划项目(2016YFC0803103);河南省自然资源厅2021年度自然资源科研项目
摘 要:针对遥感影像水体提取网络模型特征捕捉能力差的问题,提出一种轻量级Unet模型。基于原Unet的编码-解码结构,使用轻量级网络MobileNetV3构建编码器以降低模型复杂度,避免连续下采样导致细节损失;将空洞空间金字塔池化模块作为编码网络与解码网络的连接桥,对编码网络传入的高级语义特征进一步处理;在网络阶跃连接部分,通过引入卷积注意力机制抑制非目标特征通道与特征信息的干扰,均衡提升网络的识别精度;使用交叉熵损失和Dice损失结合的综合损失函数适应训练集。经国产GF-6 PMS水体数据集实验,并将结果与单波段阈值法、NDWI指数法、SVM分类法、DeepLabV3+模型、Unet模型进行比较,结果表明:该模型能够准确区别水体与其他地物,分割精度达到93.78%,证明该方法具有较高的分割精度,能够准确提取水体信息。A lightweight Unet model is proposed to address the problem of poor feature capture capability of the network model for water extraction from remote sensing images.Based on the encoder-decoder structure of the original Unet,MobileNetV3,a lightweight network,is used to build an encoder to reduce the model complexity and avoid the loss of details caused by continuous downsampling;the atrous spatial pyramid pooling module is used as a connection bridge between encoder and decoder to further process the incoming high-level semantic features of the encoder network;the skip connection part of the network is enhanced by introducing convolutional block attention module to suppress the interference of non-target feature channels and feature information to improve the recognition accuracy of the network in a balanced way;and adapt the training dataset using a comprehensive loss function combining cross-entropy loss and dice loss.After experiments on the domestic GF-6 PMS water body dataset,and comparing the results with the single-band threshold method,NDWI index method,SVM classification method,DeepLabV3+model and Unet model,the results show that the model can accurately distinguish water bodies from other features,and the segmentation accuracy reaches 93.78%,which proves that the method has high segmentation accuracy and can accurately extract water body information.
关 键 词:Unet GF-6 PMS 编码-解码 MobileNetV3 损失函数
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145