检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rémi Abgrall Maria Han Veiga
机构地区:[1]University of Zurich,Zurich,Switzerland [2]University of Michigan,Ann Arbor,USA
出 处:《Communications on Applied Mathematics and Computation》2023年第2期532-572,共41页应用数学与计算数学学报(英文)
摘 要:Recent works have shown that neural networks are promising parameter-free limiters for a variety of numerical schemes(Morgan et al.in A machine learning approach for detect-ing shocks with high-order hydrodynamic methods.et al.in J Comput Phys 367:166-191.,2018;Veiga et al.in European Conference on Computational Mechanics andⅦEuropean Conference on Computational Fluid Dynamics,vol.1,pp.2525-2550.ECCM.,2018).Following this trend,we train a neural network to serve as a shock-indicator function using simulation data from a Runge-Kutta discontinuous Galer-kin(RKDG)method and a modal high-order limiter(Krivodonova in J Comput Phys 226:879-896.,2007).With this methodology,we obtain one-and two-dimensional black-box shock-indicators which are then coupled to a standard limiter.Furthermore,we describe a strategy to transfer the shock-indicator to a residual distribution(RD)scheme without the need for a full training cycle and large data-set,by finding a mapping between the solution feature spaces from an RD scheme to an RKDG scheme,both in one-and two-dimensional problems,and on Cartesian and unstruc-tured meshes.We report on the quality of the numerical solutions when using the neural network shock-indicator coupled to a limiter,comparing its performance to traditional lim-iters,for both RKDG and RD schemes.
关 键 词:LIMITERS Neural networks Transfer learning Domain adaptation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38