Parametric Regression Approach for Gompertz Survival Times with Competing Risks  

在线阅读下载全文

作  者:H.Rehman N.Chandra 

机构地区:[1]Department of Statistics,Ramanujan School of Mathematical Sciences,Pondicherry University,Puducherry 605014,India

出  处:《Communications on Applied Mathematics and Computation》2022年第4期1175-1190,共16页应用数学与计算数学学报(英文)

摘  要:Regression models play a vital role in the study of data regarding survival of subjects.The Cox proportional hazards model for regression analysis has been frequently used in sur-vival modelling.In survival studies,it is also possible that survival time may occur with multiple occurrences of event or competing risks.The situation of competing risks arises when there are more than one mutually exclusive causes of death(or failure)for the person(or subject).In this paper,we developed a parametric regression model using Gompertz distribution via the Cox proportional hazards model with competing risks.We discussed point and interval estimation of unknown parameters and cumulative cause-specific hazard function with maximum-likelihood method and Bayesian method of estimation.The Bayes estimates are obtained based on non-informative priors and symmetric as well as asym-metric loss functions.To observe the finite sample behaviour of the proposed model under both estimation procedures,we carried out a Monte Carlo simulation analysis.To demon-strate our methodology,we also included real data analysis.

关 键 词:Competing risks Regression model Cause-specific hazard Gompertz distribution Parametric model Bayesian estimation MCMC algorithm 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象