检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘婷[1] 郭海湘[1] 诸克军[1] 高思维[1]
出 处:《数学的实践与认识》2007年第8期104-111,共8页Mathematics in Practice and Theory
基 金:国家自然科学基金(70273044;70573101);教育部人文社科基金项目(06JA880668
摘 要:在经典的k-means聚类算法中,聚类数k必须事先给定,然而在现实中k很难被精确的确定.本文提出了一种改进的遗传k-means聚类算法,并构造了一个用来评价分类程度好坏的适应度函数,该适应度函数考虑的是在提高紧凑度(类内距)和分离度(类间距)的同时使得分类个数尽可能少.最后采用两个人工数据集和三个UCI数据集对k-means聚类算法(KM),遗传聚类算法(GA),遗传k-means聚类算法(GKM)和改进的遗传k-means聚类算法(IGKM)进行比较研究,比较的指标有类间距、类内距和分类正确率.研究证明改进的遗传k-means算法能够自动获取最佳聚类数k并且保持较高的正确率.In the classical k-means algorithm,the value of k must be confirmed in advance.It is difficulty to confirm accurately the value of k in reality.This paper proposals an improved genetic k-means algorithm(IGKM) and constructs a fitness function defined as a product of three factors,maximization of which ensures the formation of a small number of compact clusters with large separation between at least two clusters.At last,two artificial and three real-life data sets are considered for experiments that compare IGKM with k-means algorithm,genetic cluster algorithm and genetic k-means algorithm by inter-cluster,inner-cluster and rate of right.The experiments show that IGKM can get the optimal value of k automatically and keep the high accuracy.
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222