检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学理学院应用数学系
出 处:《西南民族大学学报(自然科学版)》2006年第4期788-793,共6页Journal of Southwest Minzu University(Natural Science Edition)
摘 要:在目标跟踪中,对目标运动建模时,常会遇到系统状态方程存在偏差问题.传统的信息融合方法总是假设系统状态方程中的偏差为常量,很少涉及偏差为随机变量的情形,但实际建模中常会出现这类问题.针对此问题,提出了基于两阶段卡尔曼滤波的多传感器信息融合方法.这种方法可以有效地消除系统状态方程在建模存在随机偏差时给信息融合所带来的影响,从而提高了融合精度.We often meet with the problem when we construct the state models in the presence of random bias in target tracking.The traditional multi-sensor information fusion method is based on the assumption that the bias of state models is non-random.Little research is made into the problem of constructing the system models in the presence of random bias.Considering this problem,we describe an information fusion method based on two-stage state estimation in the presence of random bias for multi-sensor information fusion systems.This method can solve the problem effectively and increase the precision of fusion.
分 类 号:TN919[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117