检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《大连理工大学学报》2006年第z1期1-6,共6页Journal of Dalian University of Technology
基 金:国家自然科学基金资助项目(10372008).~~
摘 要:基于多自由度哈密尔顿系统的Melnikov理论,研究了参数激励下四边简支矩形薄板在屈曲状态下的全局分叉与混沌动力学.直接对非自治常微分方程进行全局分析,比文献中经过多次化简近似所得到的规范形更加接近原系统的性质.薄板的屈曲状态是文献中用多尺度方法所不能研究的.分析结果表明参数激励下四边简支矩形薄板存在Smale马蹄意义下的混沌,数值模拟进一步验证了解析方法的正确性.By using Melnikov method of multi-degree-of-freedom Hamiltonian systems with perturbations, the global bifurcation and chaotic dynamics of a parametrically excited and simply supported rectangular thin plate are studied. Based on the non-autonomous ordinary differential equations, which are much closer to the original system than the normal form given in the literature, global perturbation analysis of the parametrically excited rectangular thin plate is given by high dimensional Melnikov method. In the formulas of the thin plate, the case of buckling is considered which cannot be obtained after using multiple scales method. The results show that the chaotic motion can occur in the parametrically excited and simply supported rectangular thin plate. Numerical simulations verify the analytical predictions.
关 键 词:非自治 屈曲 薄板 多自由度哈密尔顿系统Melnikov理论
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.123.254