检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:涂周杰[1] 李国清[1] 张辉[1] 陈传尧[1]
机构地区:[1]华中科技大学土木工程与力学学院,湖北武汉430074
出 处:《华中科技大学学报(城市科学版)》2006年第z2期65-67,70,共4页Journal of Huazhong University of Science and Technology
摘 要:箱形结构中应力集中部位椭圆形表面裂纹区域的名义应力场分布不规则,无法使用现有的解析解和经验公式,有限元子模型法是求解此类问题的途径之一.文中分别计算了平板和箱形结构中包含椭圆形表面裂纹的三个应力强度因子,并将计算结果与N ewm an-R a ju公式以及疲劳试验结果进行了对比和分析.结果表明:有限元子模型法可以直接而且有效地计算此类结构中表面裂纹的应力强度因子.The stress intensity factors(SIF) of semi-elliptical cracks located in the stress concentration areas of a box structure is calculated.The common characteristic of the problems is that the nominal stress field at the crack area varies abnormally along three directions,so either analytical or semi-analytical solutions to such problems are not available.The sub-modeling technique of finite element analysis or FEA is studied as an alterative numerical method.Three SIFs of cracked plane or box structure are computed by using FE sub-modeling technique,and the results are compared with Newman-Raju formula and the structure fatigue test.It is found that the proposed method is an efficient numerical approach to determine the SIF of semi-elliptical cracks in complex structure.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3