基于动态RBF神经网络在线辨识的单神经元PID控制  被引量:22

Single Neuron PID Control Based on Dynamic RBF Neural Network On-line Identification

在线阅读下载全文

作  者:刘寅虎[1] 李绍铭[1] 

机构地区:[1]安徽工业大学电气信息学院,安徽马鞍山243002

出  处:《系统仿真学报》2006年第z2期804-807,共4页Journal of System Simulation

基  金:安徽省教育厅自然科学基金项目(2006KJ032B)

摘  要:针对工业控制领域中复杂非线性时变系统,提出了基于动态RBF神经网络辨识的单神经元PID控制方法。采用动态RBF神经网络辨识器在线辨识系统模型,获得PID参数在线调整信息,并由单神经元PID控制器完成控制器参数的在线自整定,实现系统的智能控制。仿真结果表明,与常规RBF神经网络辨识的PID控制方法相比,该方法具有控制精度高、响应速度快的优点,并且具备较强的自适应性和鲁棒性。To complicated systems which are of characteristics of nonlinearity and time-variation in the industrial control fields, a self-adaptive single neuron PID control method was proposed based on the dynamic RBF neural network identification, which identified system model on-line by means of dynamic neural network identifier and acquired on-line tuning information of PID parameters, and the self-tuning of controller parameters was implemented by the single neuron controller, and the intelligence control of system was achieved. The simulation result indicates that the system, compared to PID control method based on the conventional RBF neural network, possesses the advantages of high precision, quick response speed and is of great adaptability and robustness.

关 键 词:RBF神经网络 单神经元 比例-积分-微分(PID) 非线性控制 最近邻聚类算法 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象