检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学,哈尔滨150001
出 处:《仪器仪表学报》2002年第z2期486-488,491,共4页Chinese Journal of Scientific Instrument
基 金:哈尔滨工业大学跨学科交叉性研究基金资助(No HIT.MD2001.21)项目。
摘 要:提出了钢丝绳断丝定性和定量分级检测的方案,并根据二者的特点给出了两种小波神经网络模型和权值学习算法。对定性检测,输入层和隐含层之间用小波函数作为权系数,两层之间无非线性;对定量检测,应用小波非线性,神经网的输入是特征向量和小波的内积。前者适于定性分类,后者适于特征与断丝程度之间定量关系的逼近。实验结果表明:两种小波神经网络较一般的BP网络收敛速度快,外推能力强,识别精度好,这种方法成功地区分了内、外部断丝,极大地提高了断丝定量检测的准确度。This paper proposes two wavelet neural network models and weights study algorithms for qualitative classification and quantitative inspection of broken wires in steel wire ropes respectively. Wavelet functions act as weights but not using wavelet nonlinearity between input and hidden layer in qualitative classification, while the input layer of neural network is inner product of feature vector and wavelet using wavelet nonlinearity in quantitative inspection. The former is suitable for signal classification, the latter suitable for description of quantitative relationship between features and damage ratio. The experiment results show the two models have faster convergence speed for network training, more generalization capacity and accurate inspection than the general BP-Net-work. The method can differentiate internal and outer broken wires, especially improve accuracy of quantitative inspection greatly.
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112