多目标跟踪的概率假设密度粒子滤波  被引量:10

Multi-target Tracking with Probability Hypothesis Density Particle Filter

在线阅读下载全文

作  者:田淑荣[1,2] 王国宏[2] 何友[2] 

机构地区:[1]海军航空工程学院基础部 [2]海军航空工程学院信息融合研究所,山东烟台264001

出  处:《海军航空工程学院学报》2007年第4期417-420,430,共5页Journal of Naval Aeronautical and Astronautical University

基  金:国家自然科学基金资助项目(批准号:60172033)

摘  要:在多目标跟踪中,当目标数很大时,目标状态的联合分布的计算量会非常大.如果目标独立运动,可用各目标分别滤波来代替,但这要求考虑数据互联问题.文章介绍一种可以解决计算量问题的方法,只需计算联合分布的一阶矩--概率假设密度(PHD),PHD在任意区域S上的积分是S内目标数的期望值.因未记录目标身份,避免了数据互联问题.仿真中,传感器为被动雷达,目标观测值为距离、角度及速度时,对上述的PHD滤波进行了粒子实现,并对观测值是否相关的不同情况进行比较.PHD粒子滤波应用在非线性模型的多目标跟踪,实验结果表明,滤波可以稳健跟踪目标数为变数的情况,得到了接近真实情况的结果.When tracking a large number of targets, it is often computationally expensive to represent the full joint distribution over target states. In cases where the targets move independently, each target can be tracked with a separate filter, however, this leads to a model-data association problem. An approach is introduced to solve the problem with computational complexity is to track only the first moment of the joint distribution, the probability hypothesis density (PHD), the integral of this distribution over any area S is the expected number of targets within S. Since no record of object identity is kept, the model-data association problem is avoided. This PHD particle filter is applied to tracking of multiple targets, a non-linear tracking problem in which the sensor is passive radar with range, bearing and Doppler velocity observations. Compared the results of independent observations with results of correlate observations, experiments show that the filter can track a changing number of targets robustly, achieving near-real-time performance.

关 键 词:多目标跟踪 粒子滤波 概率假设密度 随机集 有限集统计 

分 类 号:TN911.1[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象