检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:DU Beiliang & WANG Jian Department of Mathematics, Suzhou University, Suzhou 215006, China Nantong Vocational College, Nantong 226007, China
出 处:《Science China Mathematics》2006年第3期289-299,共11页中国科学:数学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.10571133).
摘 要:Let Km,n be a complete bipartite graph with two partite sets having m and n vertices, respectively. A Pv-factorization of Km,n is a set of edge-disjoint Pv-factors of Km,n which partition the set of edges of Km,n. When v is an even number, Wang and Ushio gave a necessary and sufficient condition for existence of Pv-factorization of Km,n. When k is an odd number, Ushio in 1993 proposed a conjecture. Very recently, we have proved that Ushio's conjecture is true when v = 4k - 1. In this paper we shall show that Ushio Conjecture is true when v = 4k + 1, and then Ushio's conjecture is true. That is, we will prove that a necessary and sufficient condition for the existence of a P4k+1-factorization of Km,n is (i) 2km ≤ (2k + 1)n,(ii) 2kn ≤ (2k + 1)m, (iii) m + n ≡ 0 (mod 4k + 1), (iv) (4k + 1)mn/[4k(m + n)] is an integer.Let Km,n be a complete bipartite graph with two partite sets having m and n vertices, respectively. A Pv-factorization of Km,n is a set of edge-disjoint Pv-factors of Km,n which partition the set of edges of Km,n. When v is an even number, Wang and Ushio gave a necessary and sufficient condition for existence of Pv-factorization of Km,n. When k is an odd number, Ushio in 1993 proposed a conjecture. Very recently, we have proved that Ushio's conjecture is true when v = 4k-1. In this paper we shall show that Ushio Conjecture is true when v = 4k+1, and then Ushio's conjecture is true. That is, we will prove that a necessary and sufficient condition for the existence of a P4k+1-factorization of Km,n is (i) 2km≤ (2k + 1)n, (ii) 2kn≤ (2k+1)m, (iii) m + n = 0 (mod 4k + 1), (iv) (4k+1)mn/[4k(m + n)] is an integer.
关 键 词:COMPLETE BIPARTITE graph factorization Ushio Conjecture.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117