Adaptive computation for convection dominated diffusion problems  被引量:3

Adaptive computation for convection dominated diffusion problems

在线阅读下载全文

作  者:CHEN Zhiming & Jl GuanghuaLSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China (email:ghji@lsec.cc.ac.cn) 

出  处:《Science China Mathematics》2004年第z1期22-31,共10页中国科学:数学(英文版)

基  金:Chen Zhiming was supported in part by Ministry of Science and Technology of China(Grant No.G1999032802);by the National Natural Science Foundation of China(Grant No.10025102).

摘  要:We derive sharp L∞(L1) a posteriori error estimate for the convection dominated diffusion equations of the formThe derived estimate is insensitive to the diffusion parameter ε→0. The problem is dis-cretized implicitly in time via the method of characteristics and in space via continuous piecewise linear finite elements. Numerical experiments are reported to show the competitive behavior of the proposed adaptive method.We derive sharp L∞(L1) a posteriori error estimate for the convection dominated diffusion equations of the form αu/αt+div(vu)-εΔu=g. The derived estimate is insensitive to the diffusionparameter ε→0. The problem is discretized implicitly in time via the method of characteristics and in space via continuous piecewise linear finite elements. Numerical experiments are reported to show the competitive behavior of the proposed adaptive method.

关 键 词:a POSTERIORI ERROR estimator  characteristics  adaptive. 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象