入侵检测中的多分类SVM增量学习算法  被引量:3

Algorithm of Multi-category SVM Incremental Learning in Application of Intrusion Detection

在线阅读下载全文

作  者:吴静[1,2] 刘衍珩[1,2] 孟凡雪[1,2] 

机构地区:[1]吉林大学计算机科学与技术学院,长春130012 [2]吉林大学符号计算与知识工程教育部重点实验室,长春130012

出  处:《北京工业大学学报》2009年第12期1697-1702,共6页Journal of Beijing University of Technology

基  金:教育部高校博士点基金资助项目(20060183043);国家自然科学基金资助项目(60573128)

摘  要:通过分析入侵检测样本的分布特点,提出了一种多分类SVM增量学习算法.该算法通过衡量同类样本点和样本中心之间的距离来确定用于训练的支持向量,以选择对分类贡献较大的边缘向量进行训练,通过求解多个超平面的方法划分出不同类别样本的区域,实现了多分类的增量学习.在保证检测率的同时,减少了样本学习数量.利用KDDCUP99标准数据集进行测试,证明该算法可以大幅度降低训练的时间和空间复杂度.This paper proposed a new algorithm of multi-category SVM incremental learning by analyzing the distribution characteristics of the intrusion detection data.Samples used in learning were selected by measuring the distance between sample points and their class-centers,and they are those samples which will most possibly be the SVs in incremental learning.By several binary-class hyper-planes,the zones of the inhomogeneous samples are divided,so the multi-category incremental learning is realized.Using this alg...

关 键 词:支持向量机 入侵检测 增量学习 多分类 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象