基于神经网络的水平管三相分层流相分率测量  被引量:5

Study to Determine Phase Fraction of Three Phase Stratified Flow in Horizontal Pipeline with Neural Network

在线阅读下载全文

作  者:梁法春[1] 王栋[1] 林宗虎[1] 

机构地区:[1]西安交通大学动力工程多相流国家重点实验室,西安710049

出  处:《西安交通大学学报》2004年第7期750-753,共4页Journal of Xi'an Jiaotong University

基  金:国家自然科学基金资助项目(59995460).

摘  要:将采用伽马射线测量的高能计数和低能计数作为输入参数,截面含水率和含气率作为输出参数,构建了预测水平管油气水三相分层流相分率的径向基函数神经网络.通过设计的相分率标定装置获得了神经网络的学习样本.在一内径为80mm的大型油气水三相流实验环道上进行了预测效果检验实验,结果表明,神经网络预测值与实测值非常吻合,含气率预测最大误差为3 6%,含水率最大误差为2 5%,有效地克服了传统双能伽马密度仪对流型敏感,不适于分离流动测量的问题.A radial basis function (RBF) network was applied to determine phase fraction of oil-gas-water stratified three-phase flow in horizontal pipe. The numbers of counts from the gamma-ray densitometer were regarded as the input and the gas fraction and water fraction as the output. The neural network was trained according to the learning samples obtained from a specially designed device. To examine the prediction accuracy, experiments were conducted in a large oil-gas-water loop, the phase fractions were predicted with an error of 3.6%. The results show that the neural network technique is a powerful one to overcome the flow regime dependency problem of traditional gamma-ray densitometry.

关 键 词:伽马射线 神经网络 相分率 三相分层流 

分 类 号:O359[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象