检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China Mathematics》2002年第8期1059-1065,共7页中国科学:数学(英文版)
基 金:This work was supported by the National Natural Science Foundation of China (Grant No. 10171076).
摘 要:In this paper we use Dedekind zeta functions of two real quadratic number fields at -1 to denote Dedekind sums of high rank. Our formula is different from that of Siegel’s. As an application, we get a polynomial representation of ζK(-1): ζK(-1) = 1/45(26n3 -41n± 9),n = ±2(mod 5), where K = Q(√5q), prime q = 4n2 + 1, and the class number of quadratic number field K2 = Q(vq) is 1.In this paper we use Dedekind zeta functions of two real quadratic number fields at -1 to denote Dedekind sums of high rank. Our formula is different from that of Siegel's. As an application, we get a polynomial representation of ζK(-1): ζK(-1) =1/45(26n3-41n±9), n ≡±2(mod 5), where K=Q( q),prime q=4n2+1, and the class number of quadratic number field K2=Q(q) is 1.
关 键 词:QUADRATIC number fields DEDEKIND ZETA functions DEDEKIND sums.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200