The potential information in the temperature difference between shadow and sunlit of surfaces and a new way of retrieving the soil moisture  被引量:11

The potential information in the temperature difference between shadow and sunlit of surfaces and a new way of retrieving the soil moisture

在线阅读下载全文

作  者:张仁华 苏红波 李召良 孙晓敏 唐新斋 F.Becker 

出  处:《Science China Earth Sciences》2001年第2期112-123,共12页中国科学(地球科学英文版)

基  金:the China's National Key-important Basic Research Plan (Grant No.95-Y-38) , Special Funds for Major State Basic Research Project (Grant No. 2000077900) and the National Natural Science Foundation of China (Grant No. 49890330).

摘  要:The thermal inertia and plant water stress index are oftenadopted to estimate soil moisture available for crops or plants. However, it is not very easy to obtain two temporal temperatures for thermal inertia model and air temperature for the plant water stress mode. Shadows of ground objects are often referred to noise on visible and near infrared remote sensing. But the difference of temperature between shadows and sunlit contains rich information concerning with heat-water status for soil. This paper presented a new way to excavate just by temperature difference usually between shadow and sunlit surface. Experiments validated the ideal. We can adopt thermal camera to measure the differences in the field measurements. However, we must use inversion based on multianglar thermal infrared remote sensing data in airborne and spaceborne. An inverting model was also presented by using Monte-Carlo and the least square method. Results show that this way is feasible.The thermal inertia and plant water stress index are often adopted to estimate soil moisture available for crops or plants. However, it is not very easy to obtain two temporal temperatures for thermal inertia model and air temperature for the plant water stress mode. Shadows of ground objects are often referred to noise on visible and near infrared remote sensing. But the difference of temperature between shadows and sunlit contains rich information concerning with heat-water status for soil. This paper presented a new way to excavate just by temperature difference usually between shadow and sunlit surface. Experiments validated the ideal. We can adopt thermal camera to measure the differences in the field measurements. However, we must use inversion based on multianglar thermal infrared remote sensing data in airborne and spaceborne. An inverting model was also presented by using Monte-Carlo and the least square method. Results show that this way is feasible.

关 键 词:SHADOW sunlit soil water crop water stress index multi-angular remote sensing thermal geometric model 

分 类 号:X144[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象