Graham's pebbling conjecture on product of complete bipartite graphs  被引量:2

Graham' s pebbling conjecture on product of complete bipartite graphs

在线阅读下载全文

作  者:冯荣权 金珠英 

出  处:《Science China Mathematics》2001年第7期817-822,共6页中国科学:数学(英文版)

基  金:This work was supported by the National Natural Science Foundation of China (Grant Nos. 49873002, 10001005).

摘  要:The pebbling number of a graph G,f(G),is the least n such that,no matter how n pebbles are placed on the vertices of G,we can move a pebble to any vertex by a sequence of moves,each move taking two pebbles off one vertex and placing one on an adjacent vertex.Graham conjectured that for any connected graphs G and H,f(G×H)≤f(G)f(H).We show that Graham's conjecture holds true of a complete bipartite graph by a graph with the two-pebbling property.As a corollary,Graham's conjecture holds when G and H are complete bipartite graphs.The pebbling number of a graph G, f( G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Graham conjectured that for any connected graphs G and H, f( G ×H) ≤f( G) f( H). We show that Graham's conjecture holds true of a complete bipartite graph by a graph with the two-pebbling property. As a corollary, Graham's conjecture holds when G and H are complete bipartite graphs.

关 键 词:PEBBLING Graham’s conjecture Cartesian product complete bipartite graph. 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象