Numerical stability of solution to delay differential equations under resolvent condition for Runge-Kutta methods  

Numerical stability of solution to delay differential equations under resolvent condition for Runge-Kutta methods

在线阅读下载全文

作  者:赵景军 刘明珠 

出  处:《Journal of Harbin Institute of Technology(New Series)》2001年第2期135-139,共5页哈尔滨工业大学学报(英文版)

基  金:&&

摘  要:Deals with the application of Kreiss resolvent condition in the error growth analysis of numerical methods, and studies the stability of Runge Kutta method in respect of Kreiss resolvent condition with emphasis on the study on the subclass of collocation methods with abscissas in [0,1] by applying the methods to the test equation U′(t)=λU(t)+μU(t-τ)τ>0 with complex constraints μ and λ, and proves under some assumptions on the R K methods that the error growth is uniformly bounded in the stability region.Deals with the application of Kreiss resolvent condition in the error growth analysis of numerical methods, and studies the stability of Runge Kutta method in respect of Kreiss resolvent condition with emphasis on the study on the subclass of collocation methods with abscissas in [0,1] by applying the methods to the test equation U′(t)=λU(t)+μU(t-τ)τ>0 with complex constraints μ and λ, and proves under some assumptions on the R K methods that the error growth is uniformly bounded in the stability region.

关 键 词:Delay differential equations STABILITY Kreiss resolvent R K methods 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象