检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Harbin Institute of Technology(New Series)》2001年第2期155-158,共4页哈尔滨工业大学学报(英文版)
基 金:&&
摘 要:This paper deals with the stability analysis of the linear multistep (LM) methods in the numerical solution of delay differential equations. Here we provide a qualitative stability estimates, pertiment to the classical scalar test problem of the form y′(t)=λy(t)+μy(t-τ) with τ>0 and λ,μ are complex, by using (vartiant to) the resolvent condition of Kreiss. We prove that for A stable LM methods the upper bound for the norm of the n th power of square matrix grows linearly with the order of the matrix.This paper deals with the stability analysis of the linear multistep (LM) methods in the numerical solution of delay differential equations. Here we provide a qualitative stability estimates, pertiment to the classical scalar test problem of the form y′(t)=λy(t)+μy(t-τ) with τ>0 and λ,μ are complex, by using (vartiant to) the resolvent condition of Kreiss. We prove that for A stable LM methods the upper bound for the norm of the n th power of square matrix grows linearly with the order of the matrix.
关 键 词:Delay differential equations linear multistep methods resolvent condition
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44