Quantitative Analysis of Cell Tracing by in vivo Imaging System  

Quantitative Analysis of Cell Tracing by in vivo Imaging System

在线阅读下载全文

作  者:郑俊猛 徐利军 周鸿敏 张维娜 陈忠华 

机构地区:[1]Instiute of Organ Transplantation, Key Lab of Ministry of Education/Ministry of Health of China, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology [2]Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

出  处:《Journal of Huazhong University of Science and Technology(Medical Sciences)》2010年第4期541-545,共5页华中科技大学学报(医学英德文版)

基  金:supported by a grant from the National Natural Sciences Foundation of China (No. 30901364);grants from the National Basic Research Program of China (No. 2003CB515505, 2009CB522407)

摘  要:In vivo imaging system (IVIS) is a new and rapidly expanding technology, which has a wide range of applications in life science such as cell tracing. By counting the number of photons emitted from a specimen, IVIS can quantify biological events such as tumor growth. We used B16F10-luc-G5 tumor cells and 20 Babl/C mice injected subcutaneously with B16F10-luc-G5 tumor cells (1×106 in 100 μL) to develop a method to quantitatively analyze cells traced by IVIS in vitro and in vivo, respectively. The results showed a strong correlation between the number of tumor cells and the intensity of bioluminescence signal (R2=0.99) under different exposure conditions in in vitro assay. The results derived from the in vivo experiments showed that tumor luminescence was observed in all mice by IVIS at all days, and there was significant difference (P<0.01) between every two days from day 3 to day 14. Moreover, tumor dynamic morphology could be monitored by IVIS when it was in- visible. There was a strong correlation between tumor volume and bioluminescence signal (R2=0.97) by IVIS. In summary, we demonstrated a way to accurately carry out the quantitative analysis of cells using IVIS both in vitro and in vivo. The data indicate that IVIS can be used as an effective and quantitative method for cell tracing both in vitro and in vivo.In vivo imaging system (IVIS) is a new and rapidly expanding technology, which has a wide range of applications in life science such as cell tracing. By counting the number of photons emitted from a specimen, IVIS can quantify biological events such as tumor growth. We used B16F10-luc-G5 tumor cells and 20 Babl/C mice injected subcutaneously with B16F10-luc-G5 tumor cells (1×106 in 100 μL) to develop a method to quantitatively analyze cells traced by IVIS in vitro and in vivo, respectively. The results showed a strong correlation between the number of tumor cells and the intensity of bioluminescence signal (R2=0.99) under different exposure conditions in in vitro assay. The results derived from the in vivo experiments showed that tumor luminescence was observed in all mice by IVIS at all days, and there was significant difference (P<0.01) between every two days from day 3 to day 14. Moreover, tumor dynamic morphology could be monitored by IVIS when it was in- visible. There was a strong correlation between tumor volume and bioluminescence signal (R2=0.97) by IVIS. In summary, we demonstrated a way to accurately carry out the quantitative analysis of cells using IVIS both in vitro and in vivo. The data indicate that IVIS can be used as an effective and quantitative method for cell tracing both in vitro and in vivo.

关 键 词:in vivo imaging system cell tracing quantitative analysis 

分 类 号:R730.2[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象