检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《山西大学学报(自然科学版)》2012年第2期163-173,共11页Journal of Shanxi University(Natural Science Edition)
基 金:山西省高校人文社科重点研究基地项目(2011305)
摘 要:气象、水文、环境、电信、保险、金融等许多领域的数据不满足正态分布假设,而是具有尖峰、重尾特征.过去三十多年间,针对重尾分布及尾指数估计的研究得到了长足发展.文章回顾了冲击正态性假设的重尾分布的发现过程,描述了重尾分布的定义,极值理论及正则变换条件,并从研究内容的阶段特征、研究方法的不同类型总结、归纳、评述了各类尾指数估计方法及重尾阈值选取方法,最后就这些估计方法的不足和应用局限性以及如何改进和深化重尾指数的估计问题作了展望.Many studies show that the data in application fields,such as meteorology,hydrology,environment,telecommunications,insurance and finance,does not meet the normal distribution assumption,but illustrates spikes and heavy tail characteristics.In the last three decades,the research on heavy-tailed distributions and tail index estimation has been developed rapidly.We review the discovery process of heavy-tailed distributions challenging the normal distribution assumption,and introduce several different definitions of the heavy-tailed distribution,extreme value theory and regular variation conditions;moreover,summarize different types of tail index estimators and methods of selecting the heavy tail threshold by development periods and method types,and discuss the characteristics and shortages of these methods,finally,in term of the deficiencies and limitations of current estimators,how to deepen and improve the problem are reviewed.
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3