检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学水利科学与工程学院,山西太原030024
出 处:《水资源与水工程学报》2012年第4期95-97,共3页Journal of Water Resources and Water Engineering
基 金:国家自然科学基金项目(40901018);山西省高等学校优秀青年学术带头人支持计划资助
摘 要:中长期径流预测是水资源研究领域的一项重要内容,本文针对汾河上游兰村站的径流量进行预测。建立三层BP神经网络模型,采用Levenberg-Marquardt(LM)法对模型进行训练。结果表明:模拟和预测的结果精度较高,满足精度要求。LM-BP神经网络模型在汾河上游兰村站的径流预测中是可行的,研究结果可为区域水资源规划管理提供科学依据。Medium and long term hydrologic prediction of runoff is one of the most important subjects in the field of water research.This article aimed at predicting runoff at Lancun hydrologic station in the upper reaches of the Fenhe River.Artificial neural network is a nonlinear dynamic system composed of a large number of neurons.Runoff material recorded at the Lancun hydrologic station in the upper reaches of the Fenhe River were used to analyze and predict by three layers back propagation(BP) neural network model.Levenberg-Marquardt method was used to train model.Prediction results meet accuracy requirements,indicating that it is feasible to predict runoff using improved BP neural network model at Lancun hydrologic station in the upper reaches of the Fen River.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49