Regularity of the Koch-Tataru solutions to Navier-Stokes system  

Regularity of the Koch-Tataru solutions to Navier-Stokes system

在线阅读下载全文

作  者:Zhang Ping Zhang Ting 

机构地区:[1]Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China [2]Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China [3]Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China

出  处:《Science China Mathematics》2012年第2期453-464,共12页中国科学:数学(英文版)

基  金:support from the center.P.Zhang is partially supported by National Natural Science Foundation of China(Grant Nos.10421101 and 10931007);the innovation grant from the Chinese Academy of Sciences(Grant No.GJHZ200829);supported by the Program for New Century Excellent Talents in University,National Natural Science Foundation of China(Grant Nos.10871175,10931007 and 10901137);the Zhejiang Provincial Natural Science Foundation of China(Grant No.Z6100217)

摘  要:In this paper,we shall prove that the Koch-Tataru solution u to the incompressible Navier-Stokes equations in Rd satisfies the decay estimates involving some borderline Besov norms with d 3.Moreover,u has a unique trajectory which is Hlder continuous with respect to the space variables.In this paper,we shall prove that the Koch-Tataru solution u to the incompressible Navier-Stokes equations in Rd satisfies the decay estimates involving some borderline Besov norms with d 3.Moreover,u has a unique trajectory which is Hlder continuous with respect to the space variables.

关 键 词:NAVIER-STOKES EQUATIONS LITTLEWOOD-PALEY theory trajectories 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象