检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋晓宁[1,2,3] 薛益时 於东军 杨习贝[1,2,3] 刘梓[1,2]
机构地区:[1]南京理工大学计算机科学与工程学院,江苏南京210094 [2]江苏尚博信息科技有限公司博士后工作站,江苏无锡214072 [3]江苏科技大学计算机科学与工程学院,江苏镇江212003 [4]南京邮电大学海外教育学院,江苏南京210023
出 处:《南京理工大学学报》2013年第4期479-485,共7页Journal of Nanjing University of Science and Technology
基 金:国家自然科学基金(61100116);中国博士后科学基金(2011M500926);江苏省自然科学基金(BK2012700,BK2011492);江苏省博士后科学基金(1102063C);人工智能四川省重点实验室开放基金(2012RZY02)
摘 要:为了解决高维信号恢复过程中的欠定线性问题,该文提出一种优化恢复压缩传感矩阵的模糊自适应方法并应用在图像重建和识别中。首先对输入样本通过局部分块并建立三阶张量的样本描述方式,提出对降维信号进行多尺度结构分析和独立成分分析,并对结果执行压缩观测,从而使线性观测之间保持线状奇异性和统计独立性。提出一种优化传感矩阵的模糊代价函数,使传感矩阵的原子更新随后按照模糊方式计算,优化后的观测矩阵与字典矩阵之间保持了低相干性。该文方法使样本的稀疏信号在相同重构条件下具备了更优的测量数目和质量。在ORL和Yale人脸数据库及91幅自然图像库上的实验结果验证了本文算法的有效性。To solve the underdetermined linear problem in the signal recovery from high-dimensional data,a fuzzy adaptive method for optimizing recovery of compressive sensing matrix is proposed for image reconstruction and recognition.By this means,each high dimensional input sample is firstly partitioned into the several local blocks,and those local blocks are combined to represent the sample as a third-order tensor.Moreover,the compressive measurement is performed on the dimensionality-reduced source signal,which is able to find the properties of statistical independence and linear singular by using multi-scale structural analysis and independent component analysis.Finally,a new fuzzy cost function for optimization of sensing matrix is proposed,in which the update of atoms from sensing matrix are fuzzily handled,and the low coherence is obtained between the properties of observation matrix and dictionary matrix.The merit of the method is that the sparse signal has desirable properties for the number of measurements and representation qualities under the same reconstruction conditions.Extensive experimental studies conducted on ORL,Yale face images and 91 natural images databases show that the effectiveness of the proposed method.
关 键 词:稀疏表示 传感矩阵 压缩观测 优化恢复 图像识别
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46