检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨青[1] 孙佰聪[1] 朱美臣[1] 杨青川[1] 刘念[1]
机构地区:[1]沈阳理工大学信息科学与工程学院,辽宁沈阳110159
出 处:《南京理工大学学报》2013年第4期517-523,共7页Journal of Nanjing University of Science and Technology
基 金:国家自然科学基金(60974070);辽宁省科学技术计划(2010222005)
摘 要:为了提高滚动轴承震动信号故障诊断的准确性,该文提出了一种基于小波包熵和聚类分析的集合型故障诊断方法。用小波包对滚动轴承振动信号进行三层分解,并提取其能量特征。以振动信号的能量分布作为概率分布进行信息熵运算,提取振动信号特征。为了检测是否有故障发生,结合减法聚类的思想,提出采用密度指标最高原则优化初始聚类中心的K均值聚类算法进行聚类。为了检验所提方法的有效性,采用不同故障直径的滚动轴承数据进行实验。实验结果表明,新的聚类方法克服了传统K均值聚类对初始聚类中心敏感的缺陷,其结果可以作为滚动轴承早期故障诊断的依据。In order to improve the fault diagnosis accuracy of rolling bearing vibration signals,an ensemble approach based on wavelet packet entropy and clustering analysis is presented here.The method of wavelet packet is used to decompose rolling bearing vibration signals into three-layer,and extract the energy characteristics.The vibration signal energy distribution is used as the probability distribution to do the information entropy calculations and extract the vibration signal characteristics.To detect faults,combined with subtractive clustering,the K-means clustering method of optimizing initial cluster centers by the principle of highest density index is proposed.To test the effectiveness of the proposed method,the actual bearing data of rolling bearing with different fault diameters are provided in the experiment.The results show that the proposed approach avoids the sensibility of traditional K-means clustering to initial cluster centers and its result can be used as a basis for rolling bearing fault diagnosis.
关 键 词:小波包熵 减法聚类 滚动轴承 故障诊断 K均值聚类
分 类 号:TH165.3[机械工程—机械制造及自动化] TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173