检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]盐城师范学院城市与资源环境学院,江苏盐城224000
出 处:《测绘与空间地理信息》2013年第4期17-20,23,共5页Geomatics & Spatial Information Technology
基 金:国家自然科学基金项目(41071083);江苏省高校自然科学基金项目(11KJB170010);江苏省大学生实践创新训练计划项目(SPIT11-1320)资助
摘 要:支持向量机是建立在统计学习理论基础上的一种新的人工智能算法,较好地克服了传统分类方法中存在的小样本、非线性、过学习、高维数、局部极小点等问题,是一种极具潜力的遥感影像分类算法。本研究采用Landsat-5的TM影像,用支持向量分类法对影像进行分类,分析了支持向量机不同参数组合情况下的分类精度,并对支持向量分类法与传统分类方法进行了比较,发现支持向量分类算法具有参数选择范围宽,不要求对待分类区域地物光谱特征和影像分布特征具有先验知识,分类精度高等特点,对于在没有现场同步实测数据的区域进行精确的分类具有特别重要的价值。Support vector machine(SVM) is an artificial intelligent algorithm based on theory of statistics learning.It is a promising classification algorithm and can overcome the limitation of traditional classification algorithm such as small data set,nonlinear,overfitting,high dimension and local minimum.In this paper,the TM image of Landsat-5 is used for classification by the method of support vector machine.The results and precisions of classification are compared between the different parameter combinations.Further more,precisions are compared between the SVM and traditional algorithm.The results indicate that SVM classification algorithm has the advantage of broad parameters range without prior knowledge of image and samples.The precision of SVM algorithm is much higher than traditional algorithm adapting to the area without in situ measurement.
分 类 号:P2[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28